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Zusammenfassung

In der vorliegenden Dissertation wird der Einfluss des intergalaktischen, neutralen Wasserstoffs auf die pho-
tometrischen Eigenschaften von hoch rotverschobenen Galaxien – auch intergalaktische Attenuation genannt –
untersucht. Insbesondere wird auf die Unterschiede in den beobachteten Helligkeiten und Farben von Galax-
ien mit identischen spektralen Energieverteilungen aufgrund der unterschiedlichen physikalischen Eigenschaften
der Wasserstoff – oder Lyα – Wolken entlang verschiedener Sichtlinien eingegangen. Zuerst wird eine neue
Methode entwickelt, mit der Profile verschiedener Absorptionslinien mit wenigem Rechenaufwand und hoher
Präzision berechnet werden können. Zunächst wird, basierend auf dieser Methode, ein Modell für die Ab-
sorption im intergalaktischem Medium und deren Streuung aufgrund der unterschiedlichen Wolkenpopulatio-
nen entlang verschiedener Sichtlinien vorgestellt. Als Input für dieses Modell werden Verteilungsfunktionen für
die physikalischen Eigenschaften – Dichte, Temperatur, und Rotverschiebung entlang der Sichtlinie – der Lyα
Wolken verwendet, wie sie in der Literatur vorliegen. Mit Hilfe der Monte Carlo Methode werden aus diesen
Verteilungen zufällige Wolkenpopulationen und somit sogenannten Absorptionsmasken erzeugt, die die Absorp-
tion entlang einer einzigen Sichtlinie darstellen. Um die Güte verschiedener Sätze von Verteilungsfunktionen zu
bewerten, werden zunächst Modellrechnungen für jeden Satz mit Beobachtungen verglichen. Zu diesem Zweck
werden Messungen des kosmischen Flussdekrements herangezogen. Diese ist eine von der Bestimmung der
Verteilungsfunktionen unabhängige Grösse, die die Menge an neutralem Wasserstoff entlang einer gegebenen
Sichtlinie misst. Um den für diesen Vergleich benutzten Rotverschiebungsbereich zu erweitern, werden Messun-
gen die in der Literatur gefunden werden mit unseren eigenen Messungen vervollständigt. Ein bestimmter Satz
von Verteilungsfunktionen, für den die Modellrechnungen mit diesen Messungen hervorragend übereinstimmen,
wird dann weiter für die Berechnung der Unterschiede in den Magnituden – auch intergalaktische k-Korrektur
genannt – als Funktion der Rotverschiebung für verschiedene Galaxienspektren in verschiedenen Wellenlängen-
bereichen benutzt. Darüber hinaus wird der Einfluss der intergalaktischen Absorption auf die Bestimmung von
photometrischen Rotverschiebungen durch Anwendung spektraler Energieverteilungen analysiert.





Abstract

The effect of the absorption in the intergalactic medium due to neutral hydrogen randomly distributed along the
line-of-sight – in the form of Lyα absorbers – on the photometric properties of high-redshift galaxies is analysed.
In particular, the differences in the observed colors of galaxies with otherwise identical Spectral Energy Distribu-
tions, arising from the difference in the distribution and physical properties – density, temperature, redshift – of
the neutral hydrogen along different lines-of-sight is investigated. As a very first step, a new method to synthesize
absorption line-profiles – assuming that these are mathematically given by the Voigt-Hjerting function – is devel-
oped. This new method is compared to existing methods and within this context it is found to be computationally
faster than more accurate methods, and more accurate in the parameter range of interest than faster methods.
Using this method, a model that accounts for the intergalactic absorption and its scatter due to the difference in
the populations of Lyα absorbers along different random lines-of-sight is presented. This model makes use of a
set of input differential distribution functions for the physical properties of the Lyα absorbers, i.e. their number
density, column density, and Doppler parameter distribution, as obtained from observations and reported in the
literature. Following the Monte Carlo approach, absorption masks which account for the intergalactic absorption
along single lines-of-sight are constructed. Within this approach, the number and properties of each absorber
for each absorption mask are drawn from the corresponding input distributions, and their absorption line-profiles
are computed using the method previously introduced. Different sets of input distribution functions are tested by
comparing the model predictions against measurements of the cosmic flux decrement, an independent observable
that directly relates to the amount of neutral hydrogen along a given line-of-sight. This comparison is done using
measurements found in the literature together with our own measurements performed on a sample of quasars ob-
tained from the SDSS data archive. A particular set of input distribution functions is found which satisfactorily
reproduces the evolution of the cosmic flux decrement over a large redshift range. Using this set as input for our
model, the magnitude changes – or intergalactic k-correction – as a function of redshift is computed for different
input galaxy spectra and in different wavelength ranges. Furthermore, the effect of the stochastic intergalactic
absorption on the estimates of photometric redshifts using Spectral Energy Distributions is explored.
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CHAPTER 1

Introduction

The upshot of all this is that we live in a universe
whose age we can’t quite compute, surrounded by
stars whose distances from us and each other we don’t
altogether know, filled with matter we can’t identify,
operating in conformance with physical laws whose
properties we don’t truly understand.

[Bill Bryson, A Short History of Nearly Everything]

From the moment science was born, mankind has
continuously pursued a quest for a so-called Theory-
of-Everything – Heisenberg’s celebrated Weltformel –,
i.e. for a system of physical laws which consistently ac-
counts for all the phenomena observed in the World. In
the last century in particular, this quest has led science
into two, apparently mutually exclusive and opposite di-
rections: the study of the Universe on smallest scales,
the so-called micro-cosmos, and the study of the macro-
cosmos, i.e. of the Universe at the largest imaginable
scales.

The first approach has led to the discovery and devel-
opment of theories such as Quantum Mechanics, which
is as fascinating as it is puzzling. Leaving the prac-
tical difficulties inherent to its mathematical complex-
ity aside, it appears as if Quantum Mechanics could
account for every single phenomenon observed at the
atomic level. The second approach, i.e. the study of
the (macro-)Cosmos – referred to as Cosmology –, has
been developed on the basis of the Theory of General
Relativity, one of greatest intellectual achievements in
the history of mankind. General Relativity is the theory

which most accurately describes the gravitational force
to date, which in turn is the dominant interaction at the
largest scales in the Universe. Ergo, one might think
that the description of the Universe is also complete at
this scales. However, the situation is a little more com-
plex than this.

In its modern conception, Cosmology deals more
with the evolution of the Universe as a whole, with its
structure and its contents, and rather less with the ques-
tion/problem about its creation, leaving it aside mainly
because of the failure of physical laws to deal with the
description of extreme conditions in Nature, and the
creation of the Universe is certainly one of this kind!
Nonetheless, Cosmology remains an exciting subject,
powered in part by the many puzzles raised in the last
decade through the improvement of the observational
techniques. Among these puzzles, the putative exis-
tence of the so-called Dark Matter and of a mysterious
Dark Energy are the most striking.

In the last decade or so, a consistent description about
the phenomena observed at cosmological scales has
been developed which is known as Concordance Cos-
mology. This model accounts for the three major pieces
of evidence for the Big Bang theory: the existence of a
cosmic microwave background radiation, the expansion
of the Universe, and its observed large-scale structure.
However, despite its success, and in addition to the puz-
zles mentioned above, an important open question still
remains: the problem of the formation of galaxies and
their evolution.

This subject is of particular interest for the develop-



2 Introduction

ment of Cosmology, mainly because of the complex
feed-back mechanisms at galactic scales which deter-
mine both the fate of galaxies and their surroundings. It
is now widely accepted that galaxy formation is a direct
consequence of the structure formation in the Universe.
Nevertheless, it is not truly understood how galaxies ac-
tually form, neither is it known how they evolve in time
or what exactly is the origin of the variety of types ob-
served in deep images – or Deep Field Observations –
of the Universe.

Present-day observational facilities like the Hubble
Space Telescope (HST) and ground-based 8-10 m class
telescopes provide an unprecedented wealth of data
on galaxies at significant redshifts, i.e. at very large
distances. During the last decade, in particular, with
multi-wavelength Deep Field Observations (such as
the Hubble-Deep Fields North & South, Hubble-Ultra
Deep Field, etc) in combination with spectral and pho-
tometric redshift determinations, it has become possi-
ble to study the evolution of representative samples of
galaxies - not just the brightest few percent at any red-
shift/distance/epoch - over a wide range of redshifts,
and hence, look-back times.

Thus, for the first time the interpretation of a statisti-
cally relevant number of high redshift galaxies (i.e. sev-
eral thousand galaxies at redshifts between 2.5 and 3.5
and several hundreds at z > 3.5) can be performed, with
which a deeper insight into the processes involved in the
formation and evolution of galaxies can be gained. It
should be noted that redshifts between 2.5 and 3.5 cor-
respond to look-back times of 80% to 90% of the age of
the Universe in Concordance Cosmology. Hence, the
wealth of data at hand opens the possibility of studying
the properties of galaxies at their youngest evolutionary
stages.

However, the analysis and interpretation of data,
especially at the highest redshifts, is of course not
straightforward, since the light emitted by galaxies –
and hence their spectro-photometric properties – is af-
fected by different factors along its way through the
Universe. First, due to the finite velocity of light, dis-
tant galaxies are seen in younger evolutionary stages
having formed only a fraction of the stars that similar
galaxies in the Local Universe would have, an effect
that is known as evolutionary effect. Correspondingly,
their spectra and their fluxes measured in a given wave-
length range are different from those of local galaxies,
making a direct comparison of their properties virtually
impossible.

Moreover, according to Big-Bang Nucleosynthesis,

only hydrogen (H), helium (He) and some light ele-
ments up to lithium (Li) were produced shortly after
the Big Bang, while all other heavier elements present
in the Universe were synthesized within earlier gener-
ations of stars and set free to the so-called interstellar
medium (ISM) at the end of the stars’ life by stellar
winds and/or planetary nebulae (PNe) or Supernovae
(SNe) explosions. As a consequence, successive stel-
lar generations are formed from increasingly enriched
material (with respect to the content of elements heav-
ier than He). Accordingly, galaxies observed at high
redshifts and hence in younger evolutionary stages do
not have reached the enrichment levels observed in the
Local Universe. Since the chemical abundances affect
the lifetimes, gas- and heavy element-output rates, evo-
lutionary tracks, colors, luminosities and spectral prop-
erties of the stellar population, the lower enrichment
of galaxies at higher redshifts correspondingly modi-
fies their observed photometric properties with respect
to local, more enriched galaxies. Both the evolutionary
effect and the effect of lower enrichment are intrinsic to
the evolution of the galaxies.

Due to the expansion of the Universe, the wavelength
of the light emitted by galaxies at very large distances
is redshifted and their flux dimmed, their colors be-
ing consequently reddened and their luminosities weak-
ened. In addition to this so-called cosmological effect,
the spectra of distant sources are also affected by the
fact that, being extreme ultra-high-vaccum by terres-
trial standards, the space between galaxies – properly
called intergalactic medium or IGM – is by no means
empty, but is filled with a very low density gas. Due
to the strong radiation background from quasars and
star forming galaxies, this intergalactic gas – mainly
of primordial abundance – is highly ionised. It con-
tains, however, a small amount of neutral hydrogen
(around one part in ten thousand) distributed along the
line-of-sight, which significantly absorbs the light from
distant galaxies and quasars at rest-frame wavelengths
λ ≤ 121.567 nm which correspond to the Lyman reso-
nant transitions of H. Hence, the intergalactic attenua-
tion adds to the cosmological effect, contributing to the
dimming and reddening of the colors of high-redshift
galaxies, an effect that has become to be known as in-
tergalactic attenuation.

In order to account for the effect of the intergalac-
tic attenuation on the spectro-photometric properties of
galaxies, a detailed knowledge of the physical state
(density, temperature) and of the distribution of inter-
galactic H embedded in the IGM is required. Ob-
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servations in different wavelength ranges of large vol-
umes of space, so-called redshift surveys (e.g. 2dF-
GRS, SDSS), in combination with numerical simula-
tions of structure formation based on the concordance
(or ΛCDM) paradigm, reveal that the distribution of
galaxies in the Universe trace at all scales the underly-
ing distribution of Dark Matter (DM). In this scenario,
the potential wells of DM act as a sink for the baryonic
matter in the IGM–in particular for the diffuse, highly
ionised intergalactic gas–, leading to the formation of
structures by means of gravitational collapse. As a con-
sequence, the matter distribution in the Universe, and in
particular the distribution of gas in the IGM, becomes
clumpy, with large voids (i.e. empty regions in space)
alternating with filamentary structures and denser knots
at which galaxy clusters form.

When the line-of-sight to a background source hap-
pens to intersect these structures, the distribution of H
gives rise to a series of discrete absorption lines on its
spectrum. The properties (column densities, Doppler
parameters) of these absorption features, commonly
known as Lyα forest, encode the physical conditions of
the medium where the absorption takes place. Thus,
the properties of the intergalactic H can be inferred
from the analysis of the absorption lines observed in
the spectra of bright background sources (e.g. a quasar).
However, in order to extract the information from these
absorption lines, a detailed analysis of their profiles is
required. In this regard, this work makes a contribution
to improve the analysis of this type of line profiles by
providing a mathematical tool with which this profiles
can be accurately described for a wide range of values
for the column densities and Doppler parameters char-
acteristic to intergalactic H.

Once the properties characterising the intergalactic
H and their evolution are known, a model that account
for its effect on the spectra of galaxies can be con-
structed. The first step toward such a model was de-
veloped by Madau (1995). In this model, Madau de-
veloped an analytic approach with which the spectrum
of a galaxy can be corrected for the mean absorption
by intergalactic H, and its mean colors and luminosi-
ties can directly be computed. A more recent, and fun-
damentally different model of the intergalactic attenu-
ation was given by Bershady et al. (1999). In contrast
to Madau’s analytical approach, this model accounts for
the neutral hydrogen absorption on the basis of numer-
ical Monte-Carlo simulations. Hereby, an ensemble of
lines-of-sight with randomly generated populations of
absorbers is created and colors and luminosities are cal-

culated for each line-of-sight independently. Mean lu-
minosities and colors are then calculated as a arithmeti-
cal sample average of the former.

It turns out that a consistent description of the red-
shift evolution of the galaxies including evolutionary
and cosmological effects, as well as the intergalactic
attenuation, can only be achieved by using Evolution-
ary Synthesis (ES) models that describe the evolution
of a galaxy on the basis of its Star Formation History
(SFH) in terms of the time evolution of its stellar pop-
ulation, its integrated colors and luminosities in various
wavelength regions (or filter bands), and in terms of the
time evolution of the integrated galaxy spectra (like the
 code by Fritze-v. Alvensleben 1999) – provided a
cosmological model is appropriately included. ES mod-
els are based on the fact that - when averaged over long
enough periods of time and integrated over the entire
galaxy - SFHs are fairly well constrained by a multitude
of observations for respective galaxy types or templates
(E, S0, Sa-Sd) and different enough form one type to
the other to discriminate between types, provided the
observational wavelength baseline is long enough (see
e.g. Arimoto & Yoshii 1986, Arimoto & Jablonka 1991,
Bruzual A. & Charlot 1993, Fritze-v. Alvensleben 1999,
Vázquez et al. 2003, Le Borgne et al. 2004, Maraston
2005, Delgado et al. 2005, Mollá 2007).

In its present form, the Göttingen  Code in-
cludes Madau’s approach to account for the mean at-
tenuation of distant galaxy spectra. However, due to
the random distribution of H along the line-of-sight and
the corresponding stochastic absorption along different
lines-of-sight, this model does not allows a consistent
comparison with observations, in which the stochastic
nature of the absorption is unavoidably present.

Hence, the specific goal of this work is to develop a
model that accounts for the stochastic attenuation due
to the random distribution of intergalactic H along the
line-of-sight. This model is necessary to address the
impact of the stochastic intergalactic attenuation on the
photometric properties of galaxies, and to compute the
corresponding dispersion in their luminosity and color
evolution. Before this can be carried out, this model
is tested against observations, in particular, to the ob-
served evolution of the cosmic flux decrement, using
different input distribution functions for the absorber
properties. In a second step, these predictions shall be
compared to Deep Field observations, in order to de-
termine which fraction of the galaxy population in cer-
tain redshift intervals can be accommodated within the
range of normal galaxy models and what are the char-
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acteristics of the others.
In what follows I give a brief summary of the con-

tents of this work: Some basics on the physics of the hy-
drogen atom and the interaction between matter and ra-
diation are given in the first chapter. The second chapter
deals with an approximation to the Voigt-Hjerting func-
tion which is of great importance in the modelling and
synthesis of absorption line profiles due to intergalactic
neutral hydrogen. The third chapter gives a brief sum-
mary of the currently accepted picture of the Universe,
its evolution, and introduces and explains the proper-
ties of the intergalactic medium and the Lyα absorbers.
In the fourth chapter, our model of the stochastic ab-
sorption of the light of background sources due to in-
tergalactic neutral hydrogen based on the Monte Carlo
approach to model large numbers of individual lines-of-
sight is introduced. The basic input of this model is a
set of distribution functions of the physical parameters
for the Lyα absorbers. Since the observational determi-
nation of this type of distribution functions are not ul-
timately settled nowadays, we use our model with two
different sets of distributions constrained from observa-
tions to compute the redshift evolution of the cosmic
flux decrement. Contrasting our results to observations
allows us to identify one set of distributions that best
matches the data. The computation of the evolution
of the cosmic flux decrement and its scatter due to the
stochastic nature of the absorption using our model, and
a comparison between our predictions and observations
is discussed in the fifth chapter. Since the observations
used to constrain the distribution of the parameters for
the Lyα absorbers and those used to measure the red-
shift evolution of the cosmic flux decrement are orthog-
onal, we consider that the method in addition to this set
of input distribution very accurately accounts for the in-
tergalactic attenuation. On this basis, we use our model
to accurately assess the stochastic effect of intergalactic
absorption on the spectra of high-redshift galaxies, and
its impact on the estimates of photometric redshifts. A
summary and an outlook are given in the last chapter.

It should be noted that some results and equations
may be repeated through the various chapters, some of
which are already published or on in the process of ac-
ceptance/publication as independent papers. I decided
to reproduce this papers in completeness, and ask the
reader to kindly apologise for this redundancy.



CHAPTER 2

The Physics of Neutral Hydrogen

In this chapter, some theoretical results on the
interaction between neutral hydrogen and radiation
relevant for the next chapters are presented.

It is well known that neutral hydrogen interacts with
radiation by absorbing or emitting photons. In this
work, only the absorption processes are of importance
and hence, emission processes will not be discussed.
On the other hand, absorption processes relevant for this
work will be treated with some detail, in particular the
origin of the Lyman-Series.

2.1 THE LYMAN SERIES

Neutral hydrogen is known to be excited from low to
higher energy states by the absorption (or scattering) of
photons with certain wavelengths, by means of which
the electron is pushed from a lower to a higher energy
level. The set of transitions from ground level to the
first, second, etc. excited state, or equivalently from
these excited states to the ground state, specifically the
transitions np → 1 s, are known as the Lyman series 1

(see Fig. 2.1). These transitions are quantised, i.e. they
take place in principle at a well defined set of discrete
energies. The energy differences between the ground
level and each of the excited states correspond to a given
resonant wavelength of the incident photon, as can be
seen from the relation ∆E = h ν = h c/λ. The energy of

1 Named after its discoverer, the U.S. physicist Theodore Lyman
(*1874, †1954)

the nth excited state of the hydrogen atom is given by

En = −
me e2

2 (4 π, ε0 ~)2

1
n2 = −

13.6
n2 [eV] , (2.1)

where me is the mass of the electron, e is the fundamen-
tal charge unit, ε0 is the vacuum permittivity (also called
electric constant), and ~ is Planck’s constant h divided
by 2 π. 2 Recall that 1 eV = 1.602 · 10−19 J. The tran-
sition between the ground level (which corresponds to
an energy of E 0 ≈ −13.6 eV) and the first excited state
(with an energy of E 1 ≈ −3.4 eV) is known as the Lyα
transition. This has a corresponding resonant wave-
length of approximately 121.567 nm (or, equivalently,
an energy of E 1 ≈ −10.2 eV). The transition from the
ground level to the second, third, etc. excited states
are correspondingly known as Lyβ-, Lyγ-, etc. tran-
sitions, and they have associated energies which cor-
respond to the resonant wavelengths λβ = 102.572 nm,
λγ = 97.253 nm, etc., respectively (see appendix A for
a list of the first 24 Lyman transitions and their charac-
teristic quantities). All these transitions correspond to
a single type known as bound–bound transitions, since
the electron remains always attached to its nucleus. The
exception to this, a so-called bound–free transitions,
takes place when the atom absorbs a photon with an
energy exceeding E γ ≥ 13.6 eV, which corresponds to
a resonant wavelength of λ γ ≤ 91.175 nm, in which
case the electron is completely removed from the nu-
cleus. This process is known as photoionisation, and

2 me = 9.105 · 10−31 kg, e = 1.602 · 10−19 C, ε 0 = 8.854 ·
10−12 C 2N−1 m−2, h = 6.626 · 10−34 J · s
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Fig. 2.1: Energy leves of the neutral hydrogen atom, and
the first three transitions (at absorption) of the Lyman series:
Lyman-Alpha (Lyα), Lyman-Beta (Lyβ), and Lyman-Gamma
(Lyγ). In general, the Lyman transitions can be denoted by
np→ 1s with n ∈ {2, 3, . . .}.

corresponds to the process 3

H + γ → p + e . (2.2)

The wavelength λL = 91.175 nm is commonly referred
to as the Lyman edge.

Because of the quantum nature of these interactions,
not necessarily every photon interacts with an atom;
rather, there is only a probability that such a process
may take place. For instance, the cross-section for pho-
toionisiation, i.e. the probability that a hydrogen atom
absorbs a photon with a wavelength λ ≤ λL is given by 4

σ phot (λ) = g (λ) · σ∞ ·
(
λ

λL

) 3

, (2.3)

where 5

σ∞ = 6.31 · 10−18 cm 2 , (2.4)
3 Collisional ionisation, which corresponds to the process

H + e → p + e + e

will not be considered here.
4 We adopt the convention that the Lyα transition (from the ground

state to the next higher energy level) be identified with i = 2, the Lyβ
transition with i = 3, etc. The photoionisation cross-section is thus
consistently denoted by σ∞.

5 For an experimental determination of σ∞ see e.g. Palenius et al.
(1976).

and g is the so-called Gaunt factor. 6

In what follows we will drop the super-index H,
bearing in mind that throughout this work we are only
interested in neutral hydrogen.

The cross-section for photons with λ > λL, i.e. for
resonant transitions, is in principle not a continuous
function of wavelength, like the expression (2.3), but
is defined just for discrete values of λ, which corre-
spond to the resonant wavelengths of the Lyman series.
The general form of this cross-section for the transition
jp→ 1s, with j ∈ {2, 3, 4, . . .}, is given by 7

σ j =
πe 2

m e c
f j , (2.5)

where f j is a dimensionless quantity, the so-called os-
cillator strength, which describes the strength of the cor-
responding transition. The discrete nature of the cross-
section is precisely due to its dependence on this quan-
tity, which is different and constant for each transition
(see appendix A for a list of the oscillator strengths for
the Lyman transitions).

2.2 ABSORPTION DUE TO HI ATOMS

An ensemble of atoms in gaseous state and in local ther-
modynamical equilibrium (LTE), in this case neutral
hydrogen gas, may be characterised through its density
n – i.e. the number of atoms per cm3 – and temperature
T . It turns out that in the astrophysical context, instead
of its density, a quantity called column (or surface) den-
sity is more suitable in order to describe the interaction
between atoms in gaseous form and radiation. The col-
umn density, usually denoted by N (or N HI in our case)
gives the number of atoms per unit area along a line-
of-sight through the gas under consideration. For a gas
with a space-dependent density nHI (x) and a given ge-
ometry of its volume, one may define

N HI ≡

∫ l

−l
nHI (x) · d l′ , (2.6)

where the integral is computed along the line-of-sight,
and l is some characteristic measure for a linear dimen-
sion of the given geometry. For example, l would be the
radius of a spherical gas cloud. In any case, N HI should

6 An extensive tabulation of values for the Gaunt–factor can be
found in Karzas & Latter (1961).

7From now on we designate the principal quantum number n with
j, in order to avoid confusion in the next section with the volume
density of gas, also designated with n.
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be defined in such a way that it accounts for the entire
geometric cross-section of the atoms along an arbitrary
line-of-sight through the gas.

In the special case that the atomic motion is purely
of thermal nature, one may introduce a new parame-
ter as a measure of this motion. The thermal motion is
described by a Gaussian distribution of the thermal ve-
locities, also known as Maxwell-Boltzmann (MB) dis-
tribution, which is given by

M (v) d v =
1
√
π

e−(v/v 0) 2 d v
v 0

, (2.7)

where v0 is a parameter, which is uniquely related to
the temperature of the ensemble of atoms as we shall
see. The distribution (2.7) quantifies the probability of
finding an atom moving in a random direction with a ve-
locity in the range (v, v + d v). The Boltzmann factor,
as the exponential term in the above equation is called,
quantifies the probability of a microstate of energy E m

to be found within a macrostate of energy E M , accord-
ing to exp(−E m/E M). In this particular case, the en-
ergy of the microstate is the kinetic energy of a particle
with mass m, 1/2 m v 2, and the energy of the macrostate
is the total energy of the system, which is completely
defined by its kinetic temperature, k T , where m is the
mass of an atom and k is Boltzmann’s constant 8. Thus
we have

E m

E M
=

1
2

m v 2

k T
, (2.8)

and by comparison with the exponent in equation (2.7)
it is evident that the parameter v 0 is related to the tem-
perature via

v 0 =

√
2 k T

m
. (2.9)

This relation is uniquely defined, since only the positive
sign of the square-root is considered. On this basis, we
choose to describe the thermal motions of the atoms in
terms of v 0 instead of T . For consistency with the liter-
ature, we change our notation and write b ≡ v 0 and call
b the Doppler parameter. 9

This Doppler parameter is particularly useful when
considering a gas which, in addition to thermal motions,
has a Gaussian distributed turbulent velocity component

8 k = 1.3803 · 10−23J · K−1

9 This term is based on the fact that b is a characteristic velocity
for the motion of the atoms in the gas, and as such it is a measure
of the Doppler broadening of the resonant wavelength in absorption
processes (see below).

v turb. In this case, the Doppler parameter b is related to
the temperature and this turbulent component via

b 2 =
2 k T

m
+ v 2

turb . (2.10)

This result follows naturally from the fact that the
composite velocity distribution is given by the convo-
lution of two Gaussian distributions – the Maxwell-
Boltzmann distribution for the thermal and a Gaus-
sian distribution for the turbulent component –, and
that the convolution of two such functions is again
a Gaussian distribution, with a dispersion (variance)
which is just the sum of the individual dispersions, i.e.
σ 2 = σ 2

1 + σ 2
2.

Once the concepts of the column density and the
Doppler parameter are defined, the interaction between
an ensemble of atoms (gas) and photons can be quanti-
tatively described.

2.2.1 The absorption coefficient of H

Let f (λ) be the monochromatic photon flux, i.e. the
number of photons with a given wavelength (energy)
λ, which intercepts a gas with column density N HI and
Doppler parameter b along a particular line-of-sight in
the direction of r̂. Then, the fraction d f of photons,
which are scattered along the path d l = | d~l | ≡ | d l r̂|,
i.e. the difference between the flux after and before the
scattering process is given by

d f = −N HI · f · ωλ d l , (2.11)

if one supposes that ω λ d l is just the probability that
one single photon is scattered by a single atom along the
path d l. The quantity N HI · f ωλ d l is thus the number
of photons that are scattered off the line-of-sight–hence
the negative sign in equation (2.11). This missing pho-
tons are the reason for the absorption feature–mostly an
absorption line–in the observed flux. After integration
along the line-of-sight between the source and the ob-
server it follows that the observed flux is given by

f = f 0 · e−τ , (2.12)

where f0 is the total number of atoms before the absorp-
tion process and

τ (λ) ≡ N HI ·

∫ L

0
ωλ d l (2.13)

is the so-called absorption coefficient of the gas. In this
last equation, the quantity L is the absorption path in
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the gas in the direction r̂, i.e. along the line-of-sight.
In this context, the absorption coefficient is a measure
for the probability of photons with a given energy to be
scattered by gas atoms. In other words, τ is nothing but
the total cross-section of all atoms in a gas, which again
is given by the product of the cross-section of a single
atom and the total, geometrical cross-section, i.e. the
column density of the gas.

According to equation (2.3), the absorption coeffi-
cient for photoionisation, i.e. for photons with energies
corresponding to λ ≤ λL, is given by 10

τ phot (λ) = N HI · σ∞ ·

(
λ

λL

) 3

. (2.14)

As noted before, the form of the absorption co-
efficient for resonant transitions is more complicated
than the previous equation, due to different mechanism
which alter the frequency of the photons that are ab-
sorbed. In other words, the absorption that causes a
given transition does not take place at a given pho-
ton frequency, but rather in a range of frequencies
around the central (nominal) frequency, and even this
frequency may be shifted from its nominal value. Usu-
ally, these broadening and shifting mechanisms are di-
vided into local and non-local. Local mechanisms as-
sume that the absorbing medium can be treated as be-
ing in LTE. Under this conditions, the main broadening
mechanisms are the natural damping broadening, ther-
mal or Doppler broadening, and pressure broadening.

Natural damping broadening is due to the finite life-
time ∆t of atomic transitions. Thus, according to
Heisenberg’s Uncertainty principle, these transitions
take place for photons with energies in a narrow, but
finite energy range ∆E ∼ 1/∆t. This damping broaden-
ing can be classically accounted for, if one assumes that
the interaction between a photon and an electron can be
described in terms of a damped, harmonic oscillator. It
turns out that a quantum–mechanical treatment of this
effect yields the same result as the classical approach.
In either case, the strength or probability of the absorp-
tion process as a function of the photon’s frequency is
well-described for a particular transition in terms of a
Lorentzian distribution

L (ν) =
1
π

Γ/4π
(ν − ν j) 2 + (Γ/4π) 2 . (2.15)

In this equation, ν j is the resonant frequency of the
transition jp→ 1s and Γ−1 is its mean lifetime. The

10 The Gaunt factor introduced before is here approximated to
unity.

quantity Γ is commonly referred to as the damping con-
stant (see appendix A for a list of Γ values for the first
24 Lyman transitions). Pressure broadening takes place
when the emitting or absorbing particle interacts with
neighbouring particles, either by collisions or electro-
magnetically. In either case, the interactions modify the
lifetime of the transitions, thus changing the energy of
the emitted or absorbed radiation. Pressure broadening
depends both on the density and the temperature of the
gas, and it can be described in terms of a Lorentzian
distribution of the form of equation (2.15) as well.

Both the absorption cross-section σ i and the Lorentz
profile L (ν) quantify the probability of statistically in-
dependent absorption processes leading to the same
transition, and thus the total probability of a photon to
be absorbed by a single, neutral hydrogen atom, i.e. the
absorption coefficient is given by the product of both
probabilities,

τ′j (ν) = σ j · L (ν) . (2.16)

Note that this expression is valid only in the rest-
frame of the atom, denoted by the prime. In the more
general case of an atom moving with respect to an ob-
server, one has to consider the Doppler shift of the pho-
ton frequency in the rest-frame of the atom, which in
turn affects the energy range of photons that may be
absorbed. If v is the velocity of the atom (observer’s
rest-frame), and v the projection of v along the line-
of-sight 11, then the Doppler shift ∆ν j of the resonant
frequency ν j is given by

∆ν j =
v
c
ν j , (2.17)

if we assume that v/c � 1, so that the non-relativistic
approximation can be used. The absorption coefficient
in the observer’s rest-frame is thus τ′j (ν−∆ν j). Hence,
it is clear that for an ensemble of atoms, i.e. a gas, the
motion of each individual atom will give rise to a par-
ticular shift in the absorption coefficient, and will hence
broaden the energy range of photons that may be ab-
sorbed, a phenomenon known as Doppler broadening.
If the motion of the atoms is thermal in nature, it is de-
scribed in terms of a Maxwellian distribution (equation
2.7).

We may now easily derive an expression for the ab-
sorption coefficient of an ensemble of atoms, i.e. a gas
with a Doppler parameter b and column density N HI.

11 The speed v is taken to be negative if the atom is moving away
from the observer.
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First, the total absorption coefficient can be computed
by convolving the MB distribution with equation (2.16),
and multiplying the result with the column density

τ j (ν) = N HI ·

∫ +∞

−∞

τ′j (ν − ∆ν j) M (v) d v . (2.18)

Inserting equations (2.7), (2.15), and (2.16), and
defining ∆νD ≡ ν j b/c, a ≡ Γ/(4π∆νD), and the new
variables x ≡ (ν − ν j)/∆νD and y ≡ v/b, equation
(2.18) can be rewritten as 12

τ j (ν) = N HI ·

√
π e 2

m ec
f j

H (a, x)
∆νD

, (2.19)

where the Voigt-Hjerting function (Hjerting 1938) is de-
fined by

H (a, x) ≡
a
π

∫ +∞

−∞

e−y 2

(x − y) 2 + a 2 d y . (2.20)

Now, replacing frequency by wavelength we get

τ j (λ) = N HI ·

√
π e 2

m ec 2

λ 2
j

∆λD
f j H (a, x) , (2.21)

where λ j = c/ν j and ∆λD = ∆νD λ j/ν j = λ j b/c, and
in this case, a ≡ λ 2

j Γ/(4π∆λD) and x ≡ (λ − λ j)/∆λD.

The functional form of the absorption coefficient eq.
(2.21) gives rise to a particular form of the absorption
line profile, known as Voigt profile 13. As shown above,
the Voigt profile is a natural consequence of the fact
that the absorbing medium is uniquely determined by
its (column) density and kinetic temperatur (through its
Doppler parameter), which is the case when the gas is
under LTE. Hence, any deviation from a pure Voigt pro-
file indicates deviations from those equilibrium condi-
tions.

2.2.2 The Curve-of-Growth for H

The line profile contains a wealth of information about
the physical state of the absorbing medium. In partic-
ular, the strength, i.e. the depth and width of the pro-
file encode information about the density and internal
kinematics of the gas where the absorption takes place.

12 For simplicity, we leave out the index i in the definition of a,
but one has to keep in mind that its value certainly depends on the
parameters of the corresponding transition.

13 Named after the German physicist Woldemar Voigt (*1850,
†1919).

Qualitatively, it can be said that for a given column den-
sity the line profile becomes shallower and wider with
increasing Doppler parameter. Conversely, it is deeper
with increasing column density, for a fixed b. A quanti-
tative measure of the strength of an absorption line can
be gained in terms of

r (λ) ≡
f c (λ) − f (λ)

f c (λ)
, (2.22)

where f c is the continuum level and f (λ) is given by
equations (2.12) and (2.13). Plugging the latter into
equation (2.22) yields

r (λ) = 1 − e−τ(λ). (2.23)

This quantity, even though being useful, depens on
the emitted flux, and it is therefore necessary to intro-
duce a new quantity which is not. The natural choice
to get rid of this dependency is to integrate over wave-
length and thus to define

W λ ≡

∫ ∞

0
r (λ′) d λ′ =

∫ ∞

0
(1 − e−τ(λ′)) d λ′ . (2.24)

W λ is called the equivalent width.
All the information about the physical properties of

the absorbing medium are encoded in the absorption co-
efficient τ (λ) as given by equation (2.21), and more pre-
cisely in the line profile. As already noted, absorption
line profiles are well described by the Voigt-Hjerting
function, and the main pieces of information for this
type of profile are the central wavelength of the reso-
nant transition (and all the corresponding atomic quan-
tities), the Doppler parameter and the column density.
The equivalent width for a given transition can thus be
considered as a function of N HI and b, and its behaviour
can be analysed for a given range of values of these
quantities. This is best achieved through a graphical
aid, the so-called curve-of-growth. This construction
makes it possible to simultaneously analyse the depen-
dence of the line strength as a function of one of the
above parameters, while keeping the other fixed. The
curve-of-growth consists of a log–log plot which shows
the growth of a given absorption line in terms of the in-
creasing column density of the absorbing medium, for
different Doppler parameters.

Due to the complex dependence of the optical depth
τ on the different parameters {N HI, b, λ j}, it is not pos-
sible in general to compute the values of W λ analyt-
ically. This has to be achieved by numerical integra-
tion. There are, however, limiting cases for which an
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analytical approximation to the equivalent width for a
given transition as a function of column density and
Doppler parameter can be obtained, assuming that the
line profile is given. In Fig. 2.2, the curves-of-growth
for the first six Lyman transitions are shown. They have
been computed by numerical integration, assuming a
Voigt profile and using the approximation to the Voigt-
Hjerting function by Tepper-Garcı́a (2006, cf. Chapter
3). For a small number of absorbing particles, i.e. at
low column densities, the behaviour of the equivalent
width is to a good approximation linear with N HI, ie
W λ ∝ N HI. This behaviour defines the linear regime
of the curve-of-growth, which can clearly be seen in
Fig. 2.2 for column densities N HI . 10 14.5 cm−2, for
the Lyα transition. As can be seen in Fig. 2.3, the
equivalent width is nearly independent of the Doppler
parameter for a given transition in the linear regime.
When the number of absorbing particles increases, the
equivalent width also increases until there is no flux
left to absorb, and the absorption at the central wave-
length reaches its lowest possible value. The line is
said to be saturated. In this regime, the equivalent width
changes very slowly with N HI as

√
ln N HI, and defines

the flat part of the curve-of-growth. If the number of
absorbers continues to grow, their column density cor-
respondingly increases, and their interactions/collisions
are so frequent that radiation damping becomes signif-
icant. Hence, even though more absorption at the line
centre is not possible due to saturation, the equivalent
width of the line increases again due to the absorption
at wavelengths slightly shorter or larger than the central
wavelength according to a Lorentzian distribution of the
photon frequencies (equation 2.15). This is the mecha-
nism that gives rise to the damping wings, which can be
seen in Fig. 2.4(b). In this regime, i.e. column density
range–called square-root regime–the equivalent width
changes as W λ ∝

√
N HI, and is nearly independent of

the Doppler broadening.
It should be noted, as can be seen in Fig. 2.2, that

the behaviour of the curve-of-growth is qualitatively the
same for any transition, even though not quantitatively.
For instance, the Lyα absorption line saturates at col-
umn densities N HI ≈ 10 14.5 cm−2, while the Lyζ ab-
sorption line only saturates at column densities around
10 17 cm−2.

The behaviour of the equivalent width as given by
the curve-of-growth can be directly observed in the line
profile, as it should be. Lyα absorption Voigt profiles
for different column densities and a Doppler parame-
ter b = 36 km s−1 are shown in Fig. 2.4. Note in
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Fig. 2.2: Curve-of-growth for the first six Lyman transitions
of neutral hydrogen for b = 36 km s−1, which approximately
corresponds to the observed mean for intergalactic H (see
chapter 4). All three characteristic regimes described in the
text can be clearly seen. Note that the evolution of the equiv-
alent width with N HI is qualitatively the same for all transi-
tions, even though the demarcation column densities for each
regime are different for different transitions. The curves-
of-growth were computed by numerical integration assum-
ing a Voigt profile and using the approximation to the Voigt-
Hjerting function by Tepper-Garcı́a (2006).
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Fig. 2.3: Effect of the Doppler parameter on the equivalent
width. The curve-of-growth of the Lyα line is shown here
as an example, even though the behaviour is qualitatively the
same for any absorption line. Note the insensitivity of the
equivalent width to the Doppler parameter in the linear and
square-root regimes, in contrast to the strong dependence in
the flat part.
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Fig. 2.4: Lyα Voigt profiles for different column densities and a Doppler parameter b = 36 km s−1. Shown are
absorption line profiles for: (a) log N HI ∈ {12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0}, and (b) log N HI ∈

{18.5, 19.0, 19.5, 20.0, 20.5}. Note the difference in scale in the x-axis.

Fig. 2.4(a) the rapid increase in the line strength with
column density for log N HI ∈ [12.0, 14.5] (linear part
of the curve-of-growth), and how the equivalent width
of the line does not change significantly after the line
saturates, i.e. for log N HI ∈ [14.5, 16.0]. As can be seen
in Fig. 2.4(b), the line strength increases again dramat-
ically for N HI & 10 18.5 cm−2 (square-root regime), and
the damping wings due to the high column density of
the absorbing medium become observable.

The accurate determination of the column density
and Doppler parameter of an observed absorption line is
essential in order to draw conclusions about the physi-
cal state of the absorbing medium. This is of partic-
ular importance when analysing the absorption lines
observed in quasar spectra, which are caused by the
intergalactic neutral hydrogen encountered along the
line-of-sight. In this respect, it is worth discussing
the degeneracy of the curve-of-growth in the linear and
square-root regime for a given transition and different
Doppler parameters, as seen in Fig. 2.3. In the case
of the Lyα absorption line, the curve-of-growth for the
Doppler parameters b ∈ {22, 36, 50} km s−1 are prac-
tically indistinguishable from each other in the linear
regime, i.e. for N HI . 10 14.5 cm−2, as well as in
the square-root regime. Note also that the lower the
Doppler parameter, the smaller the column density at
which the line saturates. Only for very low (and in the
case of intergalactic H unrealistically low) values of
b can the different curves be distinguished from each
other at N HI & 10 13 cm−2. In the saturation regime, the

Doppler parameter has the effect of splitting the curves-
of-growth, opening the possibility to distinguish be-
tween them, assuming that the column density is known
and the equivalent width can be measured with high ac-
curacy. This degeneracy is not welcome from the ob-
servational point of view, since it places a constraint on
the accuracy with which the Doppler parameter and the
column density can independently be measured.

A way out of this problem is offered by the accurate
determination of the line profile, which is uniquely de-
fined for each transition at given column density and
given Doppler parameter. This can readily be seen on
the shape of the line profile (equation 2.21). Hence,
even though lines with different Doppler parameters
and the same column density cannot be distinguished
from each other by measuring their equivalent widths
in the linear part, it should be possible to disentangle
them on the basis of their profiles. In order to illustrate
this, we show in Fig. 2.5(a) four different Lyα line pro-
files corresponding to b ∈ {10, 22, 36, 50} km s−1 and
N HI = 10 13 cm−2. All correspond to the linear regime
of the curve-of-growth, and have the same equivalent
width, but their profiles are clearly very different. As
expected, the larger the Doppler parameter, the broader
and shallower is the line profile. It becomes now easy to
understand why lines arising in a medium with low tem-
peratures, corresponding to low values of b (see equa-
tion 2.9), saturate at lower column densities. In the satu-
ration regime, though, the profiles are qualitatively very
similar, and they may be distinguished solely on the ba-
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Fig. 2.5: Lyα line profiles for b ∈ {10, 22, 36, 50} km s−1 and two different column densities: (a) log N HI = 13.0 (linear
regime), and (b) log N HI = 16.0 (square-root regime).

sis of their widths. This can be seen in Fig. 2.5(b),
where four different Lyα Voigt profiles corresponding
to b ∈ {10, 22, 36, 50} km s−1 and N HI = 10 16 cm−2

are shown. A method widely used to determine the
line parameters consists in using line fitting algorithms
which on the basis of a χ 2 minimization technique ex-
plore a wide parameters space of the variables (N HI, b)
looking for the solution that best fits the given profile.
This technique certainly demands an extremely high
resolution of the order of λ/∆λ ≤ 10 3 at λ = 1 nm,
which is not easily achievable. An approach to a rough
determination of line parameters even with lower reso-
lution is to look for obvious observable features such as
signs of saturation or damping wings. Making use of a
curve-of-growth analysis, it should then be possible in
principle to give a rough estimate of the line parame-
ters. As will be mentioned in the following chapters, an
accurate measurements of these quantities is required
for the determination of the evolution of the intergalac-
tic neutral hydrogen content and of the Lyα absorbers.
Conversely, the uncertainty in the independent determi-
nation of b and N HI is one of the main obstacles in our
understanding of the physical state of the intergalactic
medium. As an effort to contribute in some way to solve
this problem, and especially in order facilitate the syn-
thesis of line profiles, an approximation to the Voigt-
Hjerting function was derived which will be presented
in the following chapter.



CHAPTER 3

Voigt Profile Fitting to Quasar Absorption Lines: An
Analytic Approximation to the Voigt-Hjerting

Function
The contents of this chapter are originally published as Tepper-Garcı́a, T. 2006, MNRAS, 369, 2025.

ABSTRACT

The Voigt-Hjerting function is fundamental in order
to correctly model the profiles of absorption lines im-
printed in the spectra of bright background sources by
intervening absorbing systems. In this work we present
a simple analytic approximation to this function in the
context of absorption line profiles of intergalactic H ab-
sorbers. Using basic calculus tools, we derive an an-
alytic expression for the Voigt-Hjerting function that
contains only fourth order polynomial and Gaussian
functions. In connection with the absorption coefficient
of intergalactic neutral hydrogen, this approximation is
suitable for modeling Voigt profiles with an accuracy of
10−4 or better for an arbitrary wavelength baseline, for
column densities up to N HI = 10 22 cm−2, and for damp-
ing parameters a . 10−4, i.e. the entire range of pa-
rameters characteristic to all Lyman transitions arising
in a variety of H absorbing systems such as Lyα For-
est clouds, Lyman Limit systems and Damped Lyα sys-
tems. We hence present an approximation to the Voigt-
Hjerting function that is both accurate and flexible to
implement in various types of programming languages
and machines, and with which Voigt profiles can be cal-
culated in a reliable and very simple manner.

keywords: methods: analytic, quasars: absorption
lines, line: formation, line: profiles, line: identification

3.1 INTRODUCTION

Absorption processes and their signatures (absorption
lines) imprinted on the spectra of bright background
sources (quasars, Gamma-ray bursts, etc.) are one of
the main sources of information about the physical and
chemical properties of intervening systems. It is well
known that information about their temperature, den-
sity, chemical abundances, and kinematics can be ex-
tracted from the analysis of these absorption lines. For
instance, a detailed insight into the physical state of the
intergalactic medium (IGM) is provided by the analy-
sis of the absorption lines found in the spectra of distant
quasars (QSOs) (see e.g. Hu et al. 1995, Kim et al. 1997,
2001, 2002a,b). These lines are due mainly to absorp-
tion by neutral hydrogen (H) present in a class of low
column density absorbers generally known as Lyα For-
est, and due to other elements in low ionisation stages
(CII, CIV, SiII, MgII, FeII, OII, etc.), which arise in
higher column densities absorbing systems associated
with galaxies, such as the Lyman Limit Systems (LLSs)



14 An Analytic Approximation to The Voigt-Hjerting Function

and Damped Lyα Absorbers (DLAs). A wealth of in-
formation about the distribution, density, temperature,
metal content, etc. of these systems is now available
as a result of exhaustive and extensive studies of QSO
absorption lines (see e.g. Rauch 1998, Rao 2005, for
a review on Lyα absorbers, and on metal systems and
DLAs, respectively).

In this type of analysis, and within the realm of a
given cosmological model, the number and observed
central wavelength of the absorption lines provide infor-
mation on the spatial distribution of the absorbing sys-
tems. Furthermore, knowledge about the actual physi-
cal state of these systems can be obtained basically from
the line profiles. Both line counting and line profile
measurement are tricky tasks though, since the accu-
racy with which they can be performed highly depends
on the resolution of the observed spectra. For instance,
depending on the spatial distribution of the absorbing
systems, lines can appear very close to each other or
even superpose (line blending), and a low spectral res-
olution may lead to the misidentification of the result-
ing composite profile as being a single, complex one.
Because of this same reason, the determination of the
exact shape of each individual absorption profile is far
from being trivial, and misidentified profiles may lead
to wrong conclusions about the properties of the absorb-
ing systems.

If one assumes that the physical state of the absorbing
medium is uniquely defined by its temperature and col-
umn density, single absorption line profiles are ideally
described by Voigt profiles. Mathematically, a Voigt
profile is given in terms of the convolution of a Gaussian
and a Lorentzian distribution function, known as Voigt-
Hjerting function (Hjerting 1938), and a constant fac-
tor that contains information about the relevant physical
properties of the absorbing medium (cf. Sect. 3.2.1).
Any departure from a pure Voigt profile in the observed
lines is expected to yield information about the kine-
matic properties (non-thermal broadening, rotational or
turbulent macroscopic motions), as well as spatial in-
formation (clustering) of the absorbing systems.

The Voigt-Hjerting function has long been known
and, consequently, various numerical methods to esti-
mate and tabulate this function have been developed and
presented (Hjerting 1938, Harris 1948, Finn & Muggle-
stone 1965). Also, a great effort has been done in order
to derive a semi-analytic approximation to this function
that reproduces its behavior with high accuracy (see e.g.
Whiting 1968, Kielkopf 1973, Monaghan 1971), being
the latter by far the one with the highest accuracy. With

the help of these methods, computational subroutines
have been developed that make it nowadays possible to
numerically integrate this function for a wide parameter
space (see e.g. Humlı́cek 1982).

The aim of this work is to make a further contribution
to the practical handling of the Voigt-Hjerting function
in order to compute Voigt profiles. Starting with an ex-
act expression for this function in terms of Harris’ infi-
nite series, we argue why this series may be truncated
to first order in a in the context of intergalactic H ab-
sorption lines. We then show that the second term of
this series can be approximated with a non-algebraic
polynomial function, which is mathematically simple to
handle in the sense that is does not contain singularities.
Such an analytic, ’well-behaved’ expression in terms
of simple functions as presented here is very attractive,
since it allows one to replace the many steps and opera-
tions needed for numerical integration, or to read from
look-up tables of values, by a single line with simple
operations. It is also extremely flexible to implement in
various types of codes and machines, and is particularly
useful for computational routines in higher-level pro-
gramming languages (e.g. IDL, Mathematica, Maple,
etc.), in which numerical integration or look-up table
reading is cumbersome, especially if absorption line
profiles have to be calculated many times with moderate
precision and relative high speed. For instance, such an
analytic expression should be very useful to synthesise
Lyα absorption spectra as in e.g. Zhang et al. (1997),
Richter et al. (2006), or in line-fitting algorithms like
AUTOVP (Davé et al. 1997) or FITLYMAN (Fontana
& Ballester 1995), used to obtain line parameters such
as redshift, column density, and Doppler width from ab-
sorption Voigt profiles imprinted on observed spectra.

In the next section we briefly outline the origin of
the Voigt-Hjerting function in the Physics of absorption
processes, and define the context in which the desired
approximation of this function is of interest to us. In
Sections 3.3 and 3.4 we derive this approximation, and
in Section 3.5 we compare the accuracy and speed of a
numerical method for computing Voigt profiles based
on our approximation to other existing methods. In
Section 3.6 we present an application of our method to
model Voigt profiles, and in Section 3.7 we summarise
our main results.
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3.2 THE VOIGT-HJERTING FUNCTION IN THE
CONTEXT OF H ABSORPTION LINES

3.2.1 The Absorption Coefficient

The probability of a photon with an energy E = h c/λ
to be absorbed within a gas with column density N and
kinetic temperature T , also known as absorption coeffi-
cient, is given by

τi(λ) = (Ci · N HI · a) · H [a, x(λ)] , (3.1)

where

Ci ≡
4
√
π3 e2

mec
fi
Γi

is a constant for the ith electronic transition caused by
the photon absorption. Here me is the electron mass,
fi is the oscillator strength, and Γi the damping con-
stant or reciprocal of the mean lifetime of the transi-
tion. The function H is the so-called Voigt-Hjerting
function and is given by

H(a, x) ≡
a
π

∫ +∞

−∞

e−y2

(x − y)2 + a2 d y . (3.2)

Let λi = h c/Ei be the resonant wavelength of the cor-
responding transition , and ∆λD ≡

b
cλi the thermal

or Doppler broadening, which defines a Doppler unit.
Here, the Doppler parameter b is related to the kinetic
temperature of the gas via b =

√
2kT/mp, where k is

the Boltzmann constant and mp is the proton mass. It
follows from these definitions that the damping param-
eter

a ≡
λ2

i Γi

4πc∆λD

quantifies the relative strength of damping broadening
to thermal broadening, and that the variables x ≡ (λ−λi)

∆λD

and y ≡ v
b are just the wavelength difference relative to

the resonant wavelength in Doppler units, and the par-
ticle velocity in units of the Doppler parameter, respec-
tively.

The particular form of the absorption coefficient (3.1)
induces a characteristic absorption feature known as
Voigt profile. Hence, the Voigt profile, and conse-
quently the Voigt-Hjerting function, naturally arise in
the process of absorption-line formation, when one as-
sumes that the physical state of the absorbing medium
is uniquely defined by its density and kinetic tempera-
ture. Generally speaking, it is the physical conditions
what determines the shape of the absorbing features,

i.e. the line profiles. Conversely, it is true that line pro-
files give information about the physical state of the ab-
sorbing medium. In particular, line profiles other than
Voigt profiles give information about the departure of
the physical conditions assumed here.

The class of H absorbers present in the IGM (Lyα
Forest Clouds) and associated with galaxies and larger
structures (LLSs, DLAs) can be characterised by their
column density N HI and kinetic temperature, and con-
sequently their absorption features observed on e.g.
QSO spectra are well described by Voigt profiles. Their
observed column densities span a range of ten orders of
magnitude, approximately from 1012 − 1022 cm−2, and
have temperatures that correspond to Doppler parame-
ters approximately in the range 10 − 100 km s−1, with
a median value around bm = 36 km s−1 that decreases
with redshift (Kim et al. 1997). For such a range in b,
the damping parameter a for the Lyman transitions of
intergalactic H spans a range of 9.3 · 10−9 − 6.05 · 10−4.
In this case, high values of a correspond to Lyα, while
lower values are typical for higher order Lyman tran-
sitions. Transitions of other elements, such as C, Si,
Mg, Fe, O, etc., and their various ionisation stages, are
also typically found on QSO spectra, and their damp-
ing parameters cover a range which strongly overlaps
with that of H. This can be seen in Figure 3.1, where
we show the distribution of a for different elements (in-
cluding H) in different ionisation stages, for a Doppler
parameter bHI = 36 km s−1 for H, and assuming that
the doppler parameter for other elements is related to
bHI via bX = bHI ·

√
mHI/mX , where mX is the mass

of element X. For clarity, we have grouped all differ-
ent ionisation stages of a given element under a single
label. The values of the atomic constants (central wave-
length of the transition and Γ-value) have been taken
from Morton (2003)1. The shaded area contains the val-
ues of a above the range characteristic to intergalactic
H for which our approximation to the Voigt-Hjerting
function–derived in the next sections–cannot be applied
or should be applied with caution. Note, however, that
the region spanned by a for intergalactic H, i.e. the
region underneath the shaded area, contains most of the
a-ranges spanned by all other elements, especially those
corresponding to C, O, Mg, and Fe. For other elements,

1A list containing the values of the damping parameters for
the elements and their different ionisation stages shown in Fig-
ure 3.1, is available in plain-text format at www.astro.physik.uni-
goettingen.de/˜tepper/hjerting/damping.dat. Please consult this list in
order to know the exact value of a for a given element in a given
ionisation stage.
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such as Cr or Zn, the damping parameter has values
right at the upper limit of this range.

For this reason and for the sake of simplicity, in the
following we will constrain our discussion to the Ly-
man absorption lines of intergalactic H, but the reader
shall bear in mind that the the discussion and method to
synthesise Voigt profiles presented in this work can be
directly applied to the transitions of other elements as-
sociated with H absorbing systems, according to Figure
3.1.
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Fig. 3.1: Value of the damping parameter a, assuming bHI =

36 km s−1, for different elements in different ionisation stages
typically found in QSO spectra. The doppler parameter for
other elements is assumed to be given by bX = bHI ·

√
mHI/mX

, where mX is the mass of element X. Elements are listed
by increasing atomic mass on the x-axis, and the logarithmic
value of a is given on the y-axis. For clarity, different ionisa-
tion stages of a given element have been grouped under a sin-
gle label. The shaded area marks the range above the largest
value of a for the intergalactic H Lyman transitions. Note that
for the sake of completeness, other elements than those found
to date in QSO spectra have been included as well.

3.2.2 The Absorption Coefficient of H at Low Column
Densities

Following Harris (1948), it is true that for a < 1,
i.e. when Doppler broadening dominates over damp-
ing broadening, the Voigt-Hjerting function (3.2) can
be expressed as

H(a, x) =

∞∑
n=0

Hn (x) an , (3.3)

where the functions Hn(x) are defined by

Hn (x) ≡
(−1)n

√
π n!

∫ ∞

0
vne−(v/2)2

cos(xv) d v . (3.4)

These functions are bounded with respect to n and x,
and they have values of the order of unity. Indeed, tak-
ing the absolute value of the integral, neglecting the co-
sine, which takes values of the order of unity, and com-
puting the resulting integral one can show that

|Hn(x)| ≤
2
√
π
≈ 1.123 , (3.5)

for all n ∈ {0, 1, 2, . . .} and x ∈ R. From this it follows
that if a � 1, the Voigt-Hjerting function can very well
be approximated to zeroth order in a by the first term
of the series (3.3), i.e. H(a, x) ≈ H0(x) , as first noted
by Walshaw (1955). Note that this result is exact in the
limit a→ 0. Taking the definition (3.4), it follows that

H0 (x) = e−x2
, (3.6)

and thus H(a, x) ≈ e−x2
, for a � 1. We call this the

Voigt-Hjerting function to zeroth order. 2

But what actually means that the condition a � 1 be
satisfied, so that this zeroth order approximation can be
safely used to model absorption line profiles? In order
to address this, we compute for the extreme values of a
for intergalactic H, a ≈ 10−8 and a ≈ 10−4, the depar-
ture of the Voigt-Hjerting function from a pure Gaus-
sian function. This is shown in Figure 3.2 as the loga-
rithmic difference between3 H and H0 relative to H as
a function of x, i.e. the quantity δH0 ≡ 1 − H0/H. Note
how the zeroth order approximation completelly differs
from the actual Voigt-Hjerting function at x & 3.5 for
a = 10−4, and at x & 4.5 for a = 10−8. Thus, even a
value of a as small as 10−8 is not a sufficient condition
for the zeroth order term to be a good approximation of
H for an arbitrary range in x.

In the context of the H absorption coefficient, the
condition on a for which the approximation to zeroth
order of the Voigt-Hjerting function is valid, translates
into a restriction on N HI, and more specifically on the
quantity Ci · a · N HI. This can be seen by taking a
glance at equation (3.1): Despite the fact that the con-
dition a � 1 holds, the product Ci · a · N HI can be very

2A more detailed version of this section can be found in Appendix
B

3The values of the Voigt-Hjerting function were computed nu-
merically using a routine based on Monaghan’s algorithm in Murphy
(2002) (cf. Section 3.5).



3.2 The Voigt-Hjerting Function in the context of H Absorption Lines 17

0 1 2 3 4 5 6

x

!12

!10

!8

!6

!4

!2

0

2

lo
g

1
0
 [
!
H

0
(x

)]

a = 10
!8

a = 10
!4

Fig. 3.2: Departure of the Voigt-Hjerting function from a
pure Gaussian function for a = 10−8 (solid line) and a =

10−4 (dashed line) as a function of x. The departure is
given as the logarithmic difference between the Voigt-Hjerting
function and the zeroth order approximation in the form
δH0 ≡ 1 − H0/H. The greater this quantity, the less accurate
is the zeroth order approximation.

large for high enough4 column densities, and since the
functions Hn are of the order of unity, such terms can
have a significant contribution to the absorption coef-
ficient. Along this line of reasoning, and taking into
consideration that the constant Ci in equation (3.1) is
of the order of 10−11 cm2 for all Lyman transitions, it
is clear that the departure of the Voigt-Hjerting func-
tion from its zeroth order approximation becomes sig-
nificant in the wavelength ranges x & 3.5 and x & 4.5
(in Doppler units) at column densities N HI & 1015 cm−2

for a damping parameter a = 10−4, and at column den-
sities N HI & 1019 cm−2 for a = 10−8. Since interven-
ing H absorbers typically have column densities in the
range 1012 − 1022 cm−2, a Gaussian approximation to
H for modeling intergalactic H absorption line profiles
is only suitable for the low end of the column density
range.

In addition to the factor Ci · a · N HI being large and
even more decisive for the uselessness of the zeroth or-
der approximation for an arbitrary range in x, is the
fact that the zeroth order term, e−x2

, rapidly decreases
for large values of x and is therefore overwhelmed by
higher order terms in Harris’ expansion, which hence
dominate the behavior of the absorption coefficient, as

4’High enough’ means in this case that the condition N HI > (Ci ·

a)−1 is satisfied.

already seen in Figure 3.2. To shed some light on this,
consider the following numerical example: Out to x ≈ 4
(in Doppler units), and for a = 10−4, the Voigt-Hjerting
function is of the order of 4.2 · 10−6. The zeroth order
term in the series (3.3) satisfies H0 (x = 4) ≈ 1.1 · 10−7,
whereas the first order term (a ·H1) (x = 4) ≈ 3.9 ·10−6.
Thus, at large enough x, the behaviour of τ is evidently
governed by the terms of order n ≥ 1 in the series (3.3).

3.2.3 Higher Column Densities and First Order Term

Due to the arguments stated above, and even though the
damping parameter satisfies a � 1, it is clear that the
absorption coefficient of intergalactic H cannot simply
be approximated by a constant times e−x2

for an arbi-
trary wavelength range and column densities grater than
1015 cm−2. One actually has to take into account terms
of higher order in the series (3.3), at least to first order
in a, i.e. H(a, x) ≈ (H0 + a ·H1) (x) . In fact, one should
take into account all terms up to Nth order for values
of (Ci · a · N HI)−1 that are nearly equal or greater than
the absolute difference between the sum

∑N
n=0 Hn (x) an ,

and the exact Voigt-Hjerting function. However, as we
shall show next, the approximation to first order in a
in Harris’ expansion is enough to model absorption line
profiles with moderate to high accuracy for the range of
parameters (a, NHI, Ci) characteristic to intervening H
absorbers.

In order to prove the above statement, we look at the
relative contribution of the zeroth and first order terms
to the Voigt-Hjerting function for a ∈ {10−8, 10−4} and
an arbitrary range in x. This is achieved, for exam-
ple, by computing the logarithm of the quantity δH1 ≡

|1 − (H0 + a · H1)/H| as a function of x for the two ex-
treme values of a, as shown in Figure 3.3. Here we
have advanced the function H1 which is being handled
in the next section. Note that the greater the contri-
bution from the zeroth and first order term to H, the
smaller the quantity δH1. In this case, as can clearly be
seen, δH1 takes on values of the order of 10−7 or less
over the whole wavelength range shown here and for
the whole range in a for intergalactic H.

If one takes into account that H(x) ≤ 1 for all
x, it is obvious that the relative difference is equal
or greater than the absolute difference, i.e. δH1 ≥

|H − (H0 + a · H1)|. Thus, in the case of a ≈ 10−4 and
δH1 = 10−7, the departure of H from its first order
approximation becomes significant at column densities
N HI > (a · δH1 · Ci)−1 = 1022 cm−2, and at even larger
N HI for a < 10−8 and/or smaller δH1. Hence, the first



18 An Analytic Approximation to The Voigt-Hjerting Function

two terms of Harris’ expansion dominate the behaviour
of H over the whole wavelength range shown here, with
an accuracy of 10−7 or greater, for the range in a char-
acteristic to intergalactic H. On this basis, we consider
thar an approximation to first order in a of the Voigt-
Hjerting function in terms of the functions H0 and H1 is
suitable to model Voigt profiles. Since the function H0
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Fig. 3.3: Contribution from the zeroth and first order terms of
the series (3.3) to the absorption coefficient, when (Ci ·a ·N HI)
is of the order of unity. The curves show the logarithmic dif-
ference between H and H0 + a ·H1, relative to H as a function
of x for a = 10−8 (solid line) and a = 10−4 (dashed line). The
smaller this difference, the greater the contribution from the
zeroth and first order term to H. Note that the behavior of
H is indeed dominated with a difference of seven or more or-
ders of magnitude by the first two terms of Harris’ expansion
for the whole range in x shown here. The values for H1 were
calculated according to equation (3.7), Section 3.3, using nu-
merical integration to compute the function F.

is known and simple per se, we now turn to the task of
finding an approximation to the function H1 in terms of
a simple, analytic expression.

3.3 THE DAWSON FUNCTION REVISITED

According to definition (3.4) we have

H1(x) =
−4
√
π

∫ ∞

0
v e−v2

cos(2xv) d v .

Integrating this equation partially, and computing the
resulting Sinus transform of a Gaussian it follows (Mi-
halas 1970)

H1(x) =
−2
√
π

[
1 − 2x F(x)

]
, (3.7)

where we adopt the notation first introduced by Miller
& Gordon (1931)

F(x) ≡ e−x2
∫ x

0
ev2

d v . (3.8)

F is known as the Dawson function (Dawson 1898).
It is evident that finding an approximation for H1

translates into the same problem for F. We thus want
to show that a simple analytic expression can be found
which approximates the Dawson function, and hence
the function H1, accurately enough, in order for an ap-
proximation of the Voigt-Hjerting function in terms of
these functions to be useful for synthesising Voigt pro-
files.

3.3.1 Properties of the Dawson Function

We briefly want to state some important properties of
the Dawson-Function. First, this function is antisym-
metric, i.e. F(−x) = −F(x) for all x ∈ R. Because
of this, from now on we restrict our analysis to x ≥ 0.
Besides, it has no roots in the positive semi-axis, and
F(0) = 0, as can easily be seen from its definition
(Fundamental Theorem of Calculus). Furthermore, F
is bounded, since H1 is bounded itself (cf. Sect. 3.2.2).
Indeed, differentiation with respect to x gives

d
d x

F(x) = 1 − 2x F(x) . (3.9)

Hence, the upper bound is given by F(x0) = (2x0)−1,
where x0 is defined by equating F’s derivative to zero
and solving for x. Actually, F has its maximum at
x0 = 0.92413 with F(0.92413) = 0.54104 (see e.g.
Abramowitz & Stegun 1965). From this last equation
it follows also that equation (3.7) can be rewritten as

H1(x) =
−2
√
π

d
d x

F(x) . (3.10)

We want to know how the function F behaves asymp-
totically, i.e. for x � 1 as well as for x � 1. Using the
power series of the exponential we get

F(x) = e−x2
∫ x

0

∞∑
n=0

1
n!

v2n d v = e−x2
·

∞∑
n=0

1
n!

x2n+1

2n + 1
.

(3.11)
In this case, the sum and the integral operator commute,
since the power series of the exponential converges uni-
formly in any interval [a, b], particularly for v ∈ [0, x]
(see e.g. Forster 1983). Expressing the term e−x2

by its
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corresponding power series and rearranging terms, this
last equation reads in explicit form

F(x) = x ·
(
1 −

2
3

x2 +
4

15
x4 + · · ·

)
.

Thus, for x � 1 the Dawson function behaves asymp-
totically up to third order as

F(x) ≈ x · (1 −
2
3

x2), x � 1 . (3.12)

In order to investigate how F behaves for x � 1, we first
rewrite the function (3.8) with the replacement v′ = x−v
and the aid of the power series of the exponential as

F(x) =

∞∑
n=0

1
n!

In(x) , (3.13)

with the definition

In(x) ≡
∫ x

0
v2ne−2xv d v . (3.14)

It is not hard to see that every term of the series (3.13)
is separately bounded with respect to x as well as n.
Making the replacement v′ = 2vx in eq. (3.14), and
integrating for x , 0 we get for n ∈ N0

In(x) =
1

(2x)2n+1 (2n)!(1 − e−2x2
) − e−2x2

Rn(x) , (3.15)

where Rn(x) is a rather cumbersome polynomial func-
tion. Now, for x � 1, we may drop all terms which
contain an exponential factor and in this way we get the
asymptotic form

F(x) ≈
∞∑

n=0

1
(2x)2n+1 (2n)!, x � 1 . (3.16)

It can be seen from this expression that F vanishes as
(2x)−1 for x→ ∞, and that the first derivative (3.9), and
thus the function H1, also vanish in this limit as (2x2)−1.
From equation (3.9) it is also true that F′ converges to
unity for x → 0 and that H1 converges to (−2 /

√
π)

in this limit. Since we want our approximation to F,
and consequently to H1 and H, to be valid in the whole
range x ∈ [0,∞), we require it to fulfill both these con-
ditions as well.

3.4 THE ANALYTIC APPROXIMATION D1

Equation (3.13), together with eq. (3.14), represent
indeed an exact expression for the Dawson function.

However, these expression are not suitable for practi-
cal computation. We therefore explore the possibility
of finding an analytic expression which is easy to han-
dle and which can be used to compute the value of F(x)
for x ∈ [0,∞). In particular, we shall see if it is possible
to truncate the series (3.13) in order to find an approx-
imation to F, which has all its properties (antisymme-
try, boundedness, etc.), which converges for x → ∞ as
well as for x → 0, and which is well defined in the
whole range [0,∞). For instance, equations (3.12) and
(3.16) do not fulfill these requirements. Nevertheless,
they show us how our desired function has to behave
asymptotically.

Let us define

DN(x) ≡
N∑

n=0

1
n!

In(x) . (3.17)

where the In’s are given by eq. (3.14). Using this defi-
nition we get

D1(x) = (1 − e−2x2
) ·

[
1
2x

+
1

4x3

]
− e−2x2

·

[
x
2

+
1
2x

]
.

(3.18)
It is easy to show that this function behaves qualita-
tively in the same way as F does, i.e. it is antisym-
metric, bounded, and has no roots in the positive semi-
axis. Furthermore, both these functions have the same
asymptotical behavior. Indeed, up to third order we
have for x � 1

D1(x) ≈ x · (1 −
2
3

x2), x � 1 . (3.19)

as can be shown by expanding the exponentials in eq.
(3.18) in terms of their power series. A glance at eq.
(3.12) makes the similarity between F and D1 evident in
this limit. For x � 1 we get from eq. (3.18), neglecting
the exponentials,

D1(x) ≈
1
2x

+
1

22x3 , x � 1 ,

that is the same as for F (see eq. 3.16). Furthermore,
the first derivative of D1 with respect to x is unity at
x = 0 and vanishes as (2x2)−1 for x→ ∞. However, the
maximum of D1 is at x = 0.87269 with D1(0.87269) =

0.52212, i.e. at slightly different values from those of
F.

The magnitude and range of the error in approximat-
ing the Dawson function by the function D1 can be esti-
mated, at least qualitatively, in the following way: From
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equations (3.13) and (3.17) it follows that

F(x) = D1(x) +

∞∑
n=2

1
n!

In(x) . (3.20)

The sum in this last equation, i.e. the absolute error in
our approximation F(x) ≈ D1(x), is a positive semi-
definite quantity, since each term of the sum has this
property. Hence, it is true that 0 ≤ D1(x) ≤ F(x) for
x ∈ [0,∞). Furthermore, since both F and D1 converge
to zero for x → 0 as well as for x → ∞, and both these
functions are bounded, it follows from eq. (3.20), that
the error also vanishes for x→ 0 as well as for x→ ∞,
that it is also bounded, and that its maximum value is
less equal than max {F(x) − D1(x)}x>0. From this, and
since their respective maxima are slightly shifted with
respect to each other, one is led to the conclusion, that
the error is constrained to a narrow range in x and that
the maximum error in our approximation to F occurs
near the maxima of these functions, i.e. in the vicinity
of x = 1.

We wont further try to quantify the actual error in
our approximation to F. It shall be enough to know, for
our purposes of finding an approximation to the Voigt-
Hjerting function, that the error in the approximation
F(x) ≈ D1(x) is bounded and constrained to a narrow
wavelength interval around x = 1. Besides, we will in-
directly estimate the error in this approximation when
quantifying the error in our approximation to H in Sec-
tion 3.5.

3.4.1 The Voigt-Hjerting function to First Order

Once we have found an approximation to the Dawson
function, we can use it to give the desired expression for
the Voigt-Hjerting function using Harris’ expansion to
first order in a. Replacing in equation (3.10) the func-
tion F by our approximation D1 (eq. 3.18), taking the
corresponding derivative, and rearranging terms we get

H1(x) ≈
−2
√
π

K(x) e−x2
, (3.21)

where we have defined

K(x) =
1

2x2

[
(4x2 + 3) (x2 + 1) e−x2

−
1
x2 (2x2 + 3) sinh x2

]
. (3.22)

We want to highlight the fact that equation (3.21) is well
defined, i.e. it has no singularities in the whole interval

[0,∞). Furthermore, it converges to the correct value
in the limits x → 0 and x → ∞. Indeed, it is easy to
show that limx→0 H1(x) = −2

√
π
, and limx→∞ H1(x) = 0 ,

whether one uses for H1 the exact expression (3.7) or
the approximation (3.21). In contrast, in approxima-
tions to the Voigt-Hjerting function to model Voigt pro-
files often used in the literature (see e.g. Spitzer 1978,
Zhang et al. 1997) and given in the form c1 ·e−x2

+c2 ·
1
x2 ,

where the ci’s are constants, the second term which
represents the Lorentzian damping clearly diverges for
x→ 0, and one has to artificially define the wavelength
range in which this second term is used. It is custom-
ary to neglect this term for low column densities and
in the vicinity of x = 0, but how to exactly choose the
radius of the vicinity is not clear and completely arbi-
trary. However, with an expression like equation (3.21)
at hand, no such assumptions have to be made.

Taking into account that a � 1 in order to neglect
terms of order n ≥ 2 in the series (3.3), we get, using
the expressions for H0 (eq. 3.6) and H1 (eq. 3.21), that
the Voigt-Hjerting function to first order in a is given by

H(a, x) ≈ e−x2
[
1 − a

2
√
π

K(x)
]
. (3.23)

This expression is symmetric in x, as it should be, and
thus it is valid for x ∈ R and a � 1. According to this
equation, the Voigt-Hjerting function can be regarded as
a ”corrected” Gaussian function, where the correction
term depends on the parameter a. In the context of the
absorption coefficient of H, this correction term also
depends on the column density N HI, of course, via the
quantity a · N HI.

3.5 ANALYSIS

In order to quantify the quality of our approximation
to H, we perform a test on speed as well as on pre-
cision, comparing a numerical method to compute H,
based on our approximation, to other standard, available
methods to numerically compute this function. For this
purpose, we use the approach and corresponding com-
putational routine developed by Murphy (2002), which
consists of the numerical implementation in FORTRAN
of four different methods to compute H: Harris’ H1
and H2, Humlı́ček’s, and Monaghan’s. In Murphy’s
notation, Harris’ H1 and H2 correspond to the Voigt-
Hjerting function approximated by the first three and
five terms of the series expansion (3.3), respectively.
Humlı́ček’s optimized algorithm and Monaghan’s dif-
ferential approach to approximate H are explained in
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detail in Humlı́cek (1982) and Monaghan (1971), re-
spectively. Our method to compute H consists simply in
the numerical implementation in FORTRAN5 of equa-
tions (3.22) and (3.23).

3.5.1 Speed

Following Murphy’s approach, the relative speed of
all five methods are determined by calculating the
time that a routine based on each method requires
to compute the Voigt-Hjerting function for x ∈ [0, 10]
and damping parameters a in the range 10−8 − 10−4

for a total of 1.5 · 107 runs. In this way, we get
that the relative speed6 of each method in the or-
der H1 : (this work) : Humlı́ček : H2 : Monaghan cor-
responds to 1 : 4.2 : 5.8 : 6.8 : 66.6, independent of a.
According to this result, our method is second fastest.

3.5.2 Precision

The precision of our method relative to the other meth-
ods mentioned above is determined in the following
way: First, the values of the Voigt-Hjerting function
computed using Monaghan’s algorithm for x ∈ [0, 10]
and a ∈ [10−8, 10−4] are taken as fiducial. Then, the
value of H for the same range in x and a is computed
using each of these methods, and the logarithmic differ-
ence between each method and its fiducial value, i.e. the
quantity log10 δH with δH ≡ 1−Hmethod/HMon, is calcu-
lated as a function of x for each different a. The result is
shown in Figure 3.4. It can be seen from this figure that
Harris’ H2 is the second most precise method to com-
pute H, if one takes Monaghan’s algorithm as fiducial,
but is six times slower than Harris’ H1, and one-and-
a-half times slower than our method, as stated in the
previous section. Our method has a precision of 10−4

or better for x . 4. For all values of a, the difference
peaks around x = 4 to a value of the order of 0.01, and
the precision increases again for values of x > 4. The
precision is better for smaller a, as expected, since the
zeroth order term gains in importance in our approxi-
mation for decreasing a. For a . 10−6 and x < 1.5, our

5The rearrangement of equations (3.22) and (3.23) that leads to
the smallest number of operations reads, in code syntax,

H(a, x) = H0−a /
√
π /x2·

[
H0 · H0 ·

(
4 · x2 · x2 + 7 · x2 + 4 + Q

)
− Q − 1

]
,

where the terms x2, H0 ≡ e−x2
and Q ≡ 1.5 · x−2 have to be computed

just once.
6This calculations were performed on an Intel Xeon 3.2 GHz pro-

cessor.

method is more precise than Harris’ H1 or Humlı́ček’s,
and, as seen above, 1.5 times faster than the latter.

3.5.3 Modeling of H absorption profiles

We now turn to analyse how accurate is our method in
order to model H absorption profiles. Taking the whole
range in column density log N HI ∈ [12.0, 22.0] dex and
Doppler parameters b ∈ [10.0, 100.0] km s−1 charac-
teristic to intergalactic H, we synthesise for each pair
(N HI, b) (with a resolution of ∆ log N HI = 0.05 dex, and
∆b = 0.5 km s−1) a single Lyα absorption profile in the
range λ ∈ [100, 2300] Å with a resolution of ∆λ = 0.01
Å. The absorption profile is synthesised according to
equations (3.1) and (3.2), using both our method and
Monaghan’s to compute H. We then compute for each
pair (N HI, b) the absolute value of the difference be-
tween the profiles generated using these two methods
relative to Monaghan’s, i.e. δV ≡ |1 − e−∆τ|, with
∆τ ≡ τour − τMon, as a function of wavelength for the
whole wavelength range, and pick the maximum value
of this difference in the entire range. We choose to do
so in order to pick up the worst cases possible, i.e. those
with the lowest accuracy, and put in this way a stringent
lower limit to the accuracy of our method. The result is
shown as a contrast diagram on the (log N HI, b)-plane
in Figure 3.5. Note that, in this case, it is not the loga-
rithmic, but the linear difference which is shown. The
highest precision is of the order of 10−16 or even better.
However, for the sake of simplicity, any value below
10−4 has been coded as zero. The largest discrepancy
between both methods, i.e. the lower limit in the preci-
sion of our method if one takes Monaghan’s as fiducial,
amounts to 0.01, in agreement with the result shown
in Figure 3.4. As can clearly be seen, the (lower limit
in the) precision of our method depends both on b and
N HI. While the dependence on b extends to the whole
range 10.0 − 100.0 km s−1, the dependence on N HI is
limited to the range log N HI = 16 − 20 dex. For a fixed
b, there is a regime of values around 0.01 with a width
of nearly 2 dex, which gives as a result a narrow region
of low accuracy all across the plane. Along this stripe,
the difference reaches its highest value of the order of
0.01 or smaller for the combinations (low b, low N HI)
or (high b, high N HI), in the b− and N HI−ranges stated
above. Outside this stripe, the accuracy increases dra-
matically to values of the order of 10−4 or even better.

The origin of any inaccuracy in our method is obvi-
ously the fact that terms of order n ≥ 2 have been ne-
glected in the series (3.3), and furthermore, that the sec-
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Fig. 3.4: Precision of different methods to compute the Voigt-Hjerting function, relative to Monaghan’s differential method.
Shown here is the logarithmic difference as a function of x, i.e. the quantity log10 δH, with δH ≡ 1 − Hmethod/HMon, where
HMon and Hmethod are, respectively, the Voigt-Hjerting function computed using Monaghan’s algorithm and each of the methods
mentioned in the text: H1 (solid line), H2 (short-dashed line), Humlı́ček (dot-dashed line), this work (long-dashed line). Each
panel corresponds to a different damping parameter. Here we chose the range of a characteristic to intergalactic H, i.e.
a ∈ [10−8, 10−4]. This graph was created using the approach and corresponding routine developed by Murphy (2002), and is
adapted from Figure A.1 of the same work.
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Fig. 3.5: Worst Scenario: Lower limit to the precision of
our method to synthesise Voigt profiles, given as the maxi-
mum value of the difference δV (cf. text for definition) be-
tween a Lyα absorption profile computed according to equa-
tion (3.1) using our approximation to the Voigt-Hjerting func-
tion (eq. 3.22 and 3.23) and Monaghan’s algorithm, for the
whole range of values for the parameters (log N HI, b) charac-
teristic to intergalactic H. The value corresponding to each
pair (log N HI, b) is the maximum value of the quantity δV in
the entire wavelength range λ ∈ [100, 2300] Å. For clarity,
any value below 10−4 has been coded as zero.

ond term is this series has been approximated as well.
In particular, the origin of the ’low-accuracy’ stripe on
the (log N HI, b)-plane can qualitatively be understood in
terms of the functional dependence of δV on b and N HI.
Considering that both our method and Monaghan’s take
the zeroth order term exactly into account, it is legitime
to state that the quantity ∆H ≡ Hour−HMon has a least a
dependence of first order on a, i.e. ∆H(a, x) = a ·h(a, x)
where h is a function that may be of zeroth order in a.
Hence, using equation (3.1) and this last expression, it
follows that

∆τ(λ) = C′i ·
NHI

b2 · h(a, x) ,

where

C′i ≡
e2

4
√
πme c

λ2
i fi Γi .

As can be seen, τ strongly depends on the ratio NHI
b2 .

Therefore, an increase in b of one order of magnitude
(from 10 to 100 km s−1) is nearly compensated (in the
sense that the value of τ remains nearly constant) by
an increase in N HI of two orders of magnitude, which

accounts for the stripe of 2 dex in column density seen
on the (log N HI, b)-plane. Why this happens precisely
between log N HI = 16 − 20 dex, as well as the shape
of this stripe, is non-trivially related to the exact value
of the constant C′i , the fact that h may depend also on b
through the damping parameter a, and the fact that the
∆V depends effectively not on ∆τ, but on e−∆τ.

It is worth mentioning that, for higher-order Lyman
transitions, the precision of our method to compute
Voigt profile has the same behaviour on the (log N HI, b)-
plane, and is the same as or even better than the preci-
sion of the Lyα transition shown here. The reasons for
this are, first of all, that the functional form of the ab-
sorption coefficient is obviously the same, irrespective
of the transition. In addition, the lowest precision possi-
ble of 0.01 is the same for the whole range in a spanned
by the Lyman transitions, according to Figure 3.4. Fur-
thermore, higher transitions have lower damping pa-
rameters and our approximation is better the lower a,
as already mentioned. Finally, since the constant C′i is
smaller the higher the order of the transition, the crit-
ical range of lowest precision is shifted to higher col-
umn densities and higher Doppler parameters. Since
the ranges in N HI and b are fixed for intergalactic H,
this has the net effect of increasing the high-precision
region on the (log N HI, b)-plane–i.e. the region to the
left of the stripe–for higher order transitions. In other
words, the precision of our method improves from Lyα
to higher Lyman transitions.

Even though a discrepancy of the order of 0.01 when
using our method to model Voigt profiles may seem
large, we want to emphasise again that this is merely
an lower limit for the precision in the entire wavelength
range λ ∈ [100, 2300] Å, in the case of Lyα. It turns
out that the range in wavelength for which the accu-
racy is lowest is negligible for practical purposes. In
order to show this, we first choose three points on the
(log N HI, b)-plane along the stripe of lowest precision,
i.e. for which the maximum difference is largest. Using
these parameters, we synthesise Lyα absorption pro-
files using our method and Monaghan’s, and compute
again for each of these ”worst scenarios” the quantity
δV for the whole wavelength range. The result is shown
in Figure 3.6. Each row corresponds, from top to bot-
tom, to the parameter pairs (log N HI, b) = (17.0, 10.0),
(18.0, 20.0), and (19.0, 70.0) chosen along the low-
precision stripe. The upper panel of each row shows the
Lyα absorption profile synthesised using our method,
and the corresponding lower panel gives the logarith-
mic difference log10 δV between our method and Mon-
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Fig. 3.6: Examples of Worst Scenarios: Lyα absorption line profile synthesised using our method (upper panel in each row)
and corresponding logarithmic difference with respect to our fiducial function (lower panel in each row) for the parameter
pairs (log N HI, b) = (17.0, 10.0), (18.0, 20.0), and (19.0, 70.0), from top to bottom, for which the maximum discrepancy with
respect to the fiducial value of H in Figure 3.5 is largest. The maximum difference of the order of 0.01 shown in Figure 3.5
amounts to an extremely narrow wavelength range between Gaussian core and Lorentzian wings. Away from these ranges,
the accuracy improves significantly. For reference, and for comparison with Figure 3.5, a line corresponding to a constant
logarithmic difference of -4 dex has been included in each of the lower panels.
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aghan’s as a function of wavelength. As can be seen, the
smallest discrepancies are given at the line cores, as ex-
pected, since in this regime the zeroth order term dom-
inates and both our approach and Monaghan’s exactly
take this term into account. The largest discrepancies,
of the order of 0.01, are present in an extremely narrow
range of ∆λ ≈ 0.06 Å for (log N HI, b) = (17.0, 10.0),
of ∆λ ≈ 0.17 Å for (log N HI, b) = (18.0, 20.0), and of
∆λ ≈ 0.53 Å for (log N HI, b) = (17.0, 20.0). This dis-
crepancies are found at the boundaries between Gaus-
sian core and Lorentzian wings, due to the fact that our
method neglects terms of order n ≥ 2, which dominate
the behaviour of H in that regime. Note, however, that
the difference rapidly drops with increasing distance (in
Å) from the line center to values of the order of e.g.
10−10 at a distance ∆λ ≈ 5 Å for the first two rows, and
∆λ ≈ 15 Å for last row. Hence, the effective accuracy
of our method is far better than 0.01 in the wavelength
range shown here. For the same reason mentioned in
the last paragraph, the precision for higher order Lyman
transitions is of the same order as or even better than for
the Lyα transition shown here.

3.6 APPLICATION

As a further test of the quality of our approximation
to model Voigt profiles, and to show its accuracy in a
less academic situation as in the last section, we con-
sider fitting a synthetic spectrum to a real quasar ab-
sorption spectrum with a population of intergalactic H
absorbers spanning a representative range in b and N HI
along a random line-of-sight. For this purpose we use
the observed spectrum of the quasistellar source QSO
J2233-606, a relatively bright (B = 17.5) quasar at an
intermediate redshift zem = 2.238.

The spectrum of the source QSO J2233-606, cen-
tered at the HDF-S, was obtained during the Commis-
sioning of the UVES instrument at the VLT Kueyen
Telescope and reduced at the Space Telescope Euro-
pean Coordinating Facility. The high-resolution spec-
troscopy (R ≈ 45000) was carried out with the VLT UV-
Visual Echelle Spectrograph (UVES). The data were
reduced in the ECHELLE/UVES context available in
MIDAS. The final combined spectrum has constant
pixel size of 0.05 Å and covers the wavelength range
3050-10000 Å. The S/N ratio of the final spectrum
is about 50 per resolution element at 4000 Å, 90 at
5000 Å, 80 at 6000 Å, 40 at 8000 Å. The data used
here are publicly available and were retrieved from

www.stecf.org/hstprogrammes/J22/J22.html, in its ver-
sion of November 23, 2005.

With help of the MIDAS package FITLYMAN
(Fontana & Ballester 1995), which performs line fit-
ting through χ2 minimization of Voigt profiles, Cristiani
& D’Odorico (2000) determined the redshifts, column
densities, and Doppler widths of the identified absorp-
tion features imprinted in the spectra of QSO J2233-
606. In this way, they found that the line of sight to
QSO J2233-606 intersects a total of 270 Lyα Forest
clouds, and identified other 24 absorption systems con-
taining metal lines. The Lyα absorbers span a range in
column density of 1012.20 − 1017.10 cm−2, and a range
in Doppler parameters of 1.0 − 111.0 km s−1. The dis-
tribution of the parameter pairs (N HI, b) for these sys-
tems for b ∈ [10, 100] km s−1 is shown in Figure 3.7.

Using this list of Lyα line parameters (zabs, b, N HI),

log (NHI)
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Fig. 3.7: Distribution in column density and Doppler param-
eter of the absorbing systems along the line-of-sight towards
the source QSO J2233-606. This particular LOS contains a
total of 264 absorbing systems with b ∈ [10, 100] km s−1 in
the range 3050 − 10000 Å (open circles), 69 from which are
in the wavelength range 3340 − 3530 Å (filled circles). The
data was taken from Cristiani & D’Odorico (2000). For ref-
erence and comparison, the contrast diagram shown in Figure
3.5 has also been included.

we generate a synthetic spectrum of the QSO J2233-
606 in the wavelength range 3340 − 3530 Å with a
higher resolution than that of the observed spectrum
of ∆ λ = 0.01 Å, using eqs. (3.1), (3.21), (3.22), and
(3.23). We synthesise a second spectrum using Mon-
aghan’s algorithm, and compute the logarithmic differ-
ence δV between these two synthetic spectra in the same
fashion as in the previous section. In this way, we test
again our method against the highest-precision method



26 An Analytic Approximation to The Voigt-Hjerting Function

0

0.4

0.8

1.2

0

0.4

0.8

1.2

N
or

m
al

is
ed

 F
lu

x

0

0.4

0.8

1.2

3340 3350 3360 3370 3380 3390 3400
!15
!10
!5

3400 3410 3420 3430 3440 3450
!15
!10
!5

3465 3475 3485 3495 3505 3515 3525
!15
!10
!5

Fig. 3.8: Observed (dashed line) and synthetic (solid line) spectrum of the quasar HDF-S QSO J2233-606 (upper panel in
each row) in the wavelength range [3340, 3530] Å (cf. text for reference). The synthetic spectrum was generated using
our approximation to the Voigt-Hjerting function and the list of line parameters obtained by Cristiani & D’Odorico (2000).
The lower panels show the logarithmic difference between our synthetic spectrum and one generated using the same list of
line parameters and Monaghan’s algorithm to calculate Voigt profiles. For reference, we include in the difference panels an
horizontal line corresponding to a logarithmic difference of -4 dex.
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available, for a typical range in column densities and
Doppler parameters present in a QSO spectrum. The
result is shown in Figure 3.8. The upper panels of each
row show the observed spectrum and the spectrum syn-
thesised using our method, whereas the lower panels
show the logarithmic difference between both synthetic
spectra. We choose to cut off the logarithmic differ-
ence at 10−16, since differences smaller than these are
out of the range of the highest available numerical pre-
cision. It can be seen again, as in Figure 3.6, that the
smallest discrepancies are given at the line cores, and
the largest, of the order of 10−4, are given at the wings
(cf. discussion of Figure 3.6, Section 3.5.3). As can
be seen from the column density and Doppler parame-
ter distribution in Figure 3.7, the largest discrepancies
in this wavelength range are consistent with the max-
imum absolute differences shown in Figure 3.5. Note
that in the spectral regions where no apparent absorp-
tion features are found, the logarithmic difference does
not fall to −∞, as one would naively expect. These fea-
tures are present in Figure 3.6 as well. The reason for
this ’valley-shaped’ features is that, even though having
small values away from the line center, the function H
does not fall to zero, and thus in these regions the wings
of two or more lines overlap. Strictly speaking, in these
regions there is always some absorption left, i.e. τ < 1,
and different methods to compute H will account for
this effect differently. Again, since our method neglects
terms of order n ≥ 2, the absorption in these regimes
differs from its fiducial value. The lack of this terms in
our approximation to H is also pointed out pictorially
by the local maxima symmetrically placed around the
deeps corresponding to the logarithmic difference at the
line cores.

3.7 SUMMARY

The absorption lines imprinted in the spectra of back-
ground sources yield a wealth of information about the
physical and chemical properties of the intervening ab-
sorbing material, as is the case of intervening neutral
hydrogen (H) systems embedded in the intergalactic
medium (IGM) and associated with galaxies and larger
structures. In order to extract the desired information
from these absorption lines, their profiles have to be
modeled in a proper way. In the case of absorption fea-
tures found on QSO spectra, absorption line profiles are
best modeled by Voigt profiles, which are mathemati-
cally given in terms of the Voigt-Hjerting function.

In this work, we presented a simple analytic ap-
proximation to the Voigt-Hjerting function with which
Voigt profiles can be modeled for an arbitrary range
in wavelength (or frequency), column densities up to
1022 cm−2, and for damping parameters satisfying a .
10−4. Starting with an exact expression for the Voigt-
Hjerting function in terms of Harris’ expansion that is
valid for a < 1, we showed that the zeroth order term of
this series, a Gaussian function, is suitable for modeling
absorption line profiles emerging in a medium with low
column density N HI . 1015cm−2. However, for higher
column densities, terms of higher order have to be taken
into account. A key point leading to this conclusion
is the fact that it is not the damping parameter alone,
but rather the factor a · N HI that determines to which
extent terms of order higher than zeroth in Harris’ ex-
pansion may or may not be neglected. We showed that
the departure of the actual Voigt-Hjerting function from
the first two terms in Harris’ expansion is of the order
of 10−7 or less for an arbitrary wavelength range and
a . 10−4. Hence, we concluded that with an approxi-
mation to first order in a to the Voigt-Hjerting function
Voigt profiles can be modeled with moderate to high
accuracy.

On this basis, we obtained a simple analytic expres-
sion for the Voigt-Hjerting function and consequently
for the absorption coefficient of intergalactic H, in
terms of an approximation for the second term H1 of
Harris’ expansion. The main advantages of the analytic
expression we presented here are, first, that it is valid for
an arbitrary wavelength range, in the sense that is has no
singularities. In addition, it is simple and flexible to im-
plement in a variety of programming languages to nu-
merically compute Voigt profiles with moderate speed
and moderate to high accuracy. As a matter of fact, our
method to compute the Voigt-Hjerting function is faster
with respect to other known standard methods, for in-
stance, Humlı́ček’s or Monaghan’s algorithm. Further-
more, our approximation reaches an accuracy of 10−4

or better in a wide wavelength range, and of the order
of than 10−2 only a negligible wavelength interval, for
values of a and N HI characteristic to intergalactic H
absorbers. Our method thus offers a great compromise
between speed, accuracy, and flexibility in its imple-
mentation.

Even though we did not extend our discussion in this
work to other transitions typically present in quasar ab-
sorption spectra and associated to H absorbers, such as
metal lines, our method to synthesise Voigt profiles can
certainly be applied to most of these elements as well,
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since their column densities are obviously the same, and
their ranges in a strongly overlap with the range of a
for intergalactic H, for which our approximation to the
Voigt-Hjerting function is valid. As a matter of fact, our
approximation is valid to model absorption Voigt pro-
files found in any type of spectrum (stellar, solar, etc.),
which arise in a medium whose damping parameter and
column density satisfy a . 10−4 and N HI ≤ 1022 cm−2,
respectively.
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CHAPTER 4

The Intergalactic Medium

In this chapter, some fundamental cosmological con-
cepts are introduced, which are needed to explain our
current knowledge about the structure of the Universe,
in particular of the intergalactic medium and its neutral
hydrogen content. This in turn is necessary in order to
understand the nature of the Lyα absorbers, which will
be discussed in some detail.

4.1 INTRODUCTION

After the Big Bang, the baryonic matter component of
the Universe was highly ionised due to the high temper-
ature present at those epochs, leading matter and radia-
tion to interact continuously with each other, and mak-
ing the Universe opaque due to Thomson scattering 1

on the free electrons in the hot, dense plasma. Some
3.8 · 105 years after the Big Bang–corresponding to a
redshift z ≈ 1000–, the Universe cooled below 3000 K
(or 0.25 eV), allowing matter and radiation to decouple.
From this point on, nucleons and electrons were able
to recombine in order for the baryonic plasma to be-
come neutral, and radiation was allowed to travel freely
through the Universe, being redshifted due to expansion
as it propagated, and becoming what can now be ob-
served as the Cosmic Microwave Background (CMB).

After the decoupling of matter and radiation, the Uni-
verse entered a so-called ”Dark Age”, until the first
structures and light sources (stars, galaxies, black holes)

1 Named after its discoverer, the british scientist Sir Joseph John
Thomson, OM, FRS (*1856, †1940).

formed due to gravitational collapse. The Universe
was then slowly reheated and the neutral gas reionised
probably by a first generation of stars and their cor-
responding supernova explosions (SNe) at the end of
their lives. It is also plausible that a first generation
of quasars (QSOs), i.e. accretion disks around massive
black holes (BH) formed at this early stage in the evo-
lution of the Universe, which generated a high-energy
radiation field that reionised the baryonic matter in the
intergalactic medium (IGM). With the increasing radia-
tion field, the reionised regions around each source con-
tinuously grew, and the IGM became patchy, until the
different reionised regions overlapped to form a single,
highly ionised phase, completing the epoch of reionisa-
tion at a redshift z reion ≈ 10.5 (Spergel et al. 2006).

Hence, the Universe, as is now known to us, is filled
with radiation and matter. The visible component of the
latter, i.e. the baryonic matter, shows large temporal
and spatial variations in its density. In other words, in a
comoving volume of space, the matter density becomes
larger as we look back in time. Conversely, at a given
time, matter density fluctuations are large, so large in-
deed that in the present Universe almost empty regions,
called voids, alternate with regions of high density, such
as galaxy clusters. According to the best of our present
knowledge, the visible matter, which amounts to nearly
4% of the total matter content of the universe, traces
the distribution of underlying, non-baryonic dark mat-
ter (DM), which accounts for a total of 22% of the
matter content in the Universe. The remaining 74% is
composed of an still unknown, mysterious component
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called dark energy (DE) (see e.g. Spergel et al. 2006).

4.2 THE BACKGROUND COSMOLOGY

The dynamics of the Universe as a whole – and the mat-
ter it contains – are governed on the large scale by the
gravitational force, which is currently described by Ein-
stein’s General Theory of Relativity (GR). The under-
lying idea of this theory is that the gravitational field
is locally given by the geometrical structure of space-
time, which is described by its metric. Conversely, the
presence of any form of energy – or matter, through the
relation E = m c2 – determines the metric of space-time.
For a given metric, the equations of motion of the orbit
x (τ) of a free-falling test particle are given by

d 2x λ

d τ 2 = −Γ λ
µ ν

d x µ

d τ
d x ν

d τ
. (4.1)

for λ, µ, ν = 0, 1, 2, 3. The quantities Γ λ
µ ν are the so-

called Christoffel symbols which are defined by

Γ λ
µ ν =

1
2

g λ κ

(
∂g ν κ

∂x µ
+
∂g µ κ

∂x ν
−
∂g ν µ

∂x κ

)
, (4.2)

where gµν is the metric tensor.
The equations which describe the relation between

the gravitational field (metric) and its sources (energy)
are Einstein’s field equations, which are given by

Rµν = −
8 πG

c 4

(
Tµν −

1
2

Tgµν

)
, (4.3)

where Rµν is the Ricci tensor, Tµν is the energy-mo-
mentum tensor, and G is the Newtonian gravitational
constant. 2 The metric tensor defines the geometry
of space-time, while the energy-momentum tensor
contains all the sources of the gravitational field, that
in turn specify the metric of space-time, making the
equations highly non–linear. Mathematically, this is
reflected by the fact that the Ricci tensor is linear in
second derivatives of the metric tensor, and quadratic
in its first derivatives, so that equation (4.3) is a highly
non-linear differential equation in gµν.

There are many known exact solutions of – i.e. met-
rics that satisfy – Einstein’s field equations, one of
which is of particular interest for cosmology, the so-
called Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)

2 G = 6.67300 · 10−11m3kg−1s−2

metric. 3 This metric can be derived by demanding
that the matter distribution, i.e. the energy-momentum
tensor, in the Universe satisfy (only) isotropy and ho-
mogeinity when averaged over large enough volumes
of space 4, a requirement that is known as the Cosmo-
logical Principle 5 and is to some extent supported by
observations. The line element ds for the FLRW metric
is given by

ds2 = c2 dt2 − a(t)
(
du2 + f 2(u) dΩ2

)
, (4.4)

where the dynamical variable a(t) is the scale factor
of the Universe that quantifies its linear dimension,
dΩ2 = dθ2 + sin2 θ dφ2 is the square surface element on
the two-dimensional unit sphere S 2, and f (u) is equal
to {sin u , u , sinh u} for k, the time-independent curva-
ture parameter, equal to {+1 , 0 ,−1}, respectively. The
values of k describe, in that order, a closed, a flat, or an
open geometry.

Plugging the FLRW metric into Einstein’s field equa-
tions yields a set of differential equations in a known
as Friedmann’s equations, which describe the dynam-
ics of the Universe. 6 In this model, galaxies are seen as
”particles” of a cosmic fluid with density ρ and pressure
p, which according to equation (4.4) move along ra-
dial orbits (in comoving coordinates), onto which pecu-
liar motions can be superposed. Friedmann’s equations,
which relate various cosmological parameters, can be
written as

H 2(t) ≡
( ȧ
a

) 2
=

1
3

(8 πG ρ + Λ) − k
( c
a

) 2
(4.5)

3
ä
a

= Λ − 4 πG
(
ρ + 3

p
c 2

)
(4.6)

Here, Λ is the cosmological constant – which is thought
to originate as a consequence of vacuum energy–, and
H is the Hubble parameter, which measures the expan-
sion rate of the Universe. A further quantity of interest
is the dimensonless deceleration parameter q, which is
defined by

q ≡ −
1

H 2

(
dH
dt

+ H 2
)

(4.7)

3 This metric was independently and almost simultaneously dis-
covered by Alexander Friedmann, Georges Lemaı̂tre, Howard Percy
Robertson, and Arthur Geoffrey Walker.

4 It is of course vague what it’s meant by this, but it seems that a
volume of some 108 pc across would do. This scale is what is known
as the ”End of Greatness”.

5 One version of this principle states that: ”In the Universe, all
positions and directions are equivalent”.

6 These equations were found in 1922 by the Russian cosmolo-
gist and mathematician Alexander A. Friedmann (*1888,†1925). The
FLRWM was actually derived by Friedmann from these equations.
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Friedmann’s equations predict a dynamic Universe,
whose fate depends on the total amount of matter (en-
ergy) of all types it contains. This quantity can be use-
ful parametrized by introducing the density parameter
Ω, which is defined by

Ω ≡
ρ

ρ c
=

8 πG
3 H 2 ρ . (4.8)

Here, ρ c ≡ 3 H 2/(8 πG) is the so-called critical den-
sity, i.e. the density for which the Universe would have
a flat geometry. In other words, Ω = 1 would imply
k = 0. Otherwise, the Universe would have an open or
a closed geometry for Ω < 1 and k = −1 or Ω > 1 and
k = +1, respectively. The density term in Friedmann’s
equations includes in general the contribution from dif-
ferent components, which will evolve independently as
the Universe expands. It is often assumed that each of
these components obeys a very simple equation of state
of the form (Carroll 2001) 7

p i = w i c 2ρ i (4.9)

where ρ i is the density of the corresponding compo-
nent, and w i is a constant. In this case, it follows from
Friedmann’s equations that the density ρ i evolves as

ρ i ∝ a−3(1+w i) (4.10)

as shown in Appendix C.
The concept of the density parameter can thus be gen-

eralised to allow for all possible sources of the gravita-
tional field (i.e. radiation, matter, cosmological con-
stant, and curvature). Following Carroll (2001), the
density parameter for each component may be defined
in analogy to (4.8) as

Ω i ≡
8 πG
3 H 2 ρ i . (4.11)

Taking all these into account, the first of Friedmann’s
equations can be rewritten as(

H(t)
H 0

)2

≡
[
Ωr a−4 + Ωm a−3 + ΩΛ + Ωk a−2

]
. (4.12)

where Ω r is the radiation density, ΩΛ is the cosmo-
logical constant density, Ω k ≡ −k c 2/H 2

0 is the contri-
bution from the space curvature to the total density of

7 We do not follow the convention that c = 1, and thus c appears
in all equations where it should.

the Universe, and all correspond to present values. 8 It
is a straightforward consequence of the above equation
and the definition of H 0 that

Ω tot(t = 0) ≡ Ω r + Ω m + ΩΛ + Ω k = 1 . (4.13)

Using this last equation, one may alternatively define

Ω k ≡ 1 −Ω r −Ω m −ΩΛ . (4.14)

A useful form of the deceleration parameter (4.7) can
be obtained using equations (4.6) and (4.11). First note
that equation (4.6) can be rewritten by including all
forms of energy(–density) as

ä
a

= −
4
3
πG

∑
i

(1 + 3w i) ρ i , (4.15)

where
∑

i ρ i ≡ ρ, and p has been replaced using
equation (4.9). Furthermore, the deceleration parameter
(4.7) can be rewritten as q = −ä/(a H 2) (see Appendix
D). Inserting the above equation into this last expres-
sion, and using equation (4.11) yields

q =
∑

i

1 + 3w i

2
Ω i . (4.16)

The different components of the total density Ω tot

can be estimated from independent observations. For
instance, measurements of the first peak of in the angu-
lar power spectrum of the spherical harmonic decom-
position of the Cosmic Microwave Background (CMB)
temperature field are consistent with a Universe with
a total density Ω tot ≈ 1, i.e. a flat Universe (see e.g.
de Bernardis et al. 2000). This implies k ≈ 0, and since
the radiation density is negligible at the present epoch,
it follows that Ω m + ΩΛ ≈ 1 (see equation 4.13). It
follows from this and equation (4.16) that

q 0 =
1
2

Ω m −ΩΛ . (4.17)

since Ω k = 0 and Ω r ≈ 0.
Observations of distant Type Ia Supernovae (SN Ia)

imply that the expansion of the Universe is accelerat-
ing, i.e. q 0 < 0, which according to the above equation

8 As a rule of convention, the subscript ”0” (nought) in all cosmo-
logical quantities indicates their respective present value. For instance
H 0 is the value of the Hubble parameter at the present time. However,
in order to avoid a confusing notation, we will leave out this subscript
for the density parameters, and we will adopt the convention that they
always refer to its present value, if not stated otherwise.
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Table 4.1: State-of-the-art measurements of some cosmological parameters, obtained from the three-year WMAP Date Release
(Spergel et al. 2006).

Parameter Value Description

H0 70.9+2.4
−3.2 km s−1Mpc−1 Hubble parameter

Ωb 0.0444+0.0042
−0.0035 Baryon density

Ωm 0.266+0.025
−0.040 Total matter density (Baryons + Dark Matter)

ΩΛ 0.732+0.040
−0.025 Dark Energy density

points to the existence of a density component with neg-
ative pressure (Perlmutter et al. 1999). These results,
together with the fact that the matter density has been
constrained by different measurements to Ω m ≈ 0.26
(Percival et al. 2007), imply that ΩΛ ≈ 0.74. All these
results are consistent with the most recent measure-
ments of some cosmological parameters of the WMAP
(Spergel et al. 2006), which are listed in table 4.1. The
set of parameters {H 0, Ω b, Ω m}, together with the opti-
cal depth to reionisation τ, the scalar fluctuation ampli-
tude A s, and the scalar spectral index n s are called the
concordance cosmology.

4.3 THE LARGE-SCALE STRUCTURE OF THE UNI-
VERSE

4.3.1 The Λ-Cold Dark Matter (ΛCDM) Model

Our view of the structure and composition of the IGM
has fundamentally changed in the last years motivated
by refined observations and improved theoretical work.
The assumption of a smooth–as oposite to lumpy–IGM,
consistent of a uniformly distributed, highly ionised gas
was discarded as the attempt to detect its most promi-
nent observational signature–a continuous absorption
trough on the spectra of background sources, that be-
came known as Gunn-Peterson trough–failed. Through
the observation of discrete, narrow absorption lines im-
printed in the spectra of background sources over a
large wavelength interval, together with the assumption
that these are caused by the small fraction of neutral
hydrogen present in the highly ionised intergalactic gas
intersected along the line-of-sight, it soon became clear
that the IGM is clumpy and not smooth or uniform. Dif-
ferent models were proposed to account for the distri-
bution and the nature of observed absorption features.

The assumption of a two-phase intergalactic medium, in
which a cold component containing basically neutral H
is embedded in a warmer so–called intercloud medium
(ICM) as proposed by Sargent et al. (1980), Ostriker
& Ikeuchi (1983), and the resulting model of pressure-
confined Lyα clouds (Baron et al. 1989) was abandoned
for the idea that the absorbing systems are dominated
by their own gravity, as proposed a few years before by
Melott (1980). This, in turn, got replaced by the idea
that the intergalactic neutral hydrogen gas is contained
in the potential wells of Dark Matter haloes (Umemura
& Ikeuchi 1985). They suggested two different types of
Dark Matter: On the one hand, they proposed the ex-
istence of Hot Dark Matter (HDM) (such as neutrinos)
and on the other hand, the presence of Cold Dark Mat-
ter (CDM). The main argument against the existence of
HDM is that this type of particles would tend to erase
the structures on small scales at very early epochs in the
Universe, at variance with what is observed today.

Later on, the lumpy nature of the IGM and the Uni-
verse at large scales became apparent as a result of large
redshift surveys as the CfA (Davis et al. 1982), Las
Campanas (Shectman et al. 1996), 2dFGRS 9, SDSS 10,
etc. that revealed that the redshift and spatial distri-
bution of galaxies is not uniform. Instead, as times
goes on, galaxies tend to clump in clusters, and in and
around the filamentary structures connecting these clus-
ters, leaving large empty regions of space, the so called
voids (see Fig. 4.1). Such observations show that the
Universe is quite inhomogeneous at small scales, and
nearly homogeneous and isotropic at large scales. This
result was corroborated by the measurement of the Cos-
mic Microwave Background (CMB) first by the Cos-

9 http://www2.aao.gov.au/2dFGRS
10 http://www.sdss.org
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Fig. 4.1: Galaxy redshift distribution as measured by the 2dF facility at the Anglo-Australian Observatory (AAO). Taken from
www2.aao.gov.au/2dFGRS

mic Background Explorer (COBE) 11 and later by the
Wilkinson Microwave Anisotropy Probe (WMAP) satel-
lites 12, which mapped the temperature distribution of
the CMB on the sky, revealing a smooth background
with anisotropies of the order of ∆T/T = 10−5, which
trace the primordial density fluctuations that gave origin
to the structure observed in the Universe today.

Obviously, the development of a consistent model
explaining all these observational results and includ-
ing the constraints on the cosmology implied by the
measurement of different cosmological parameters was
imperative. First proposed by Ostriker & Steinhardt
(1995), the so-called Concordance or Λ-Cold Dark
Matter model 13 has become the most fruitful attempt to
simultaneously explain in a consistent manner the CMB
radiation, the expansion of the Universe, and the large-

11 http://lambda.gsfc.nasa.gov/product/cobe/
12 http://map.gsfc.nasa.gov/
13 ”ΛCDM says nothing about the fundamental physical origin of

dark matter, dark energy and the nearly scale-invariant spectrum of
primordial curvature perturbations: in that sense, it is merely a useful
parametrization of ignorance.”

scale structure of the Universe. In this model, a flat Uni-
verse and the existence of a so-called Dark Energy (DE)
component, parametrized by the cosmological constant
Λ, are assumed. Furthermore, a weakly-(or non-)self-
interacting, non-radiating, collisionless matter compo-
nent, the so-called cold dark-matter (CDM), is thought
to interact only gravitationally with ordinary (baryonic)
matter. 14According to this scenario, the structures in
the Universe are formed hierarchically (bottom-up, as
opposed to ”fragmentation” or top-down) and evolve in
time due to gravitational interaction. It it assumed that
before the decoupling era, i.e. before the time when the
temperature of the Universe had dropped enough as to
allow for matter to recombine, and the mean free path
of radiation increased to almost the size of the Universe,
the CDM had already decoupled from the primordial
plasma and began to collapse under the action of gravity
around overdense regions generated by quantum fluctu-
ations and enlarged during the period of inflation (Guth

14 The difference between ”cold” and ”hot” dark matter refers to
the particle’s velocity at the epoch of decoupling: the former were
non-relativistic, in contrast to the later.
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1981). After matter and radiation decoupled, baryonic
matter, i.e. the photoionised gas, began to condensate
in the potential wells of the already collapsed DM, giv-
ing rise to the different structures such as galaxies and
galaxies clusters, and to the gaseous structures seen in
absorption against bright background sources, e.g. the
Lyα absorption features (cf. Sec. 4.4). In this scenar-
ion, a fixed mass ratio for the baryons in a DM halo of
a given mass is conventionally assumed. At the same
time, the formation of structures at all scales under the
influence of gravity lead the IGM to become clumpy
and to acquire peculiar motions.

Taking the ΛCDM paradigm as the underlying for-
mation scenario and with the help of state-of-the-art
numerical simulations, such as the Millenium Simula-
tion 15 performed using the  code (Springel et al.
2005) , it has indeed become possible to reproduce the
absorption features and their statistical properties (see
e.g. Demiański et al. 2000), under the assumption that
they are produced by the resonant scattering of photons
off the line-of-sight by neutral intergalactic hydrogen
present in the (forming) structures intercepted by the
line-of-sight. The results of these simulations imply
that the IGM should contain 50%-90% of the baryons
in the Universe out to z ≈ 2. This in turn implies that
the galaxies observed at high redshift such as the Dis-
tant Red Galaxies (DRGd), the Lyman Break Galax-
ies (LBGs), and the Damped Lyα Systems (DLAs, see
below) trace the highest density peaks in the distribu-
tion of matter at those redshifts. Such predictions can
be tested against observations by estimating the total
amount of bright baryonic matter, on the one hand, and
by taking advantage of the fact that the neutral, non-
luminous component of the baryonic matter present in
the IGM can be still detected in absorption in the form
of the so-called Lyα absorbers on the spectra bright
enough background sources. Conversely, a census of
the amount and distribution of this non-luminous com-
ponent is necessary in order to assess its impact on the
spectra of other bright sources than quasars. In partic-
ular, it is of great interest for the development of mod-
els that account for the spectrophotometric evolution of
galaxies. The effect of the absorption in the intergalac-
tic medium on the spectra of high-redshift galaxies will
be analysed in Chapter 5 and beyond. However, it is
necessary first to introduce and present in some detail
the properties of the intergalactic neutral hydrogen in
form of the Lyα absorbers.

15 http://www.mpa-garching.mpg.de/galform/millennium/

4.4 THE Lyα ABSORBERS

It is a predicton of Big-Bang Nucleosynthesis,
that hydrogen (H), helium (4 He), deuterium
(D) and lithium (7 Li) were formed shortly af-
ter the Big Bang in a precise ratio, namely
H : 4He : D : 7Li ≈ 1 : 1/3 : 10−5 : 10−10. 16 Out
of this primordial gas, large, complex structures such
as stars, galaxies, galaxy clusters, etc., began to form
when this gas settled down and cooled down in the po-
tential wells of the underlying dark matter, as explained
above. Between redshift z = 15 and z = 7, heavier and
more complex elements than lithium were synthesised
in the first generation of stars within proto-galaxies –
so-called Population (Pop) III stars – and restored to
the interstellar medium (ISM) by various mechanisms
(supernovae explosions, and later stellar winds) where
they would eventually be recycled for the formation
of new generations of stars. Moreover, these heavier
elements found its way even into the IGM, probably
through galactic winds observed in many LBG, tidal
stripping in galaxy interaction, and eventually also
through pre-galactic Pop III stars. Thus, throughout the
evolution of the Universe, the intergalactic medium has
been a source for the gas that forms stars, galaxies, etc.,
and has served as a repository for enriched material and
energy expelled from galaxies (Madau 2000).

Hydrogen is the most abundant element in the Uni-
verse, in the interstellar medium (ISM) as well as in the
IGM. Due to the strong ultraviolet (UV) background,
i.e. the UV flux of quasars (QSOs), and actively star-
forming, young galaxies at high-redshift, the hydro-
gen present in the IGM is highly ionised. It is found,
however, to be in ionisation equilibrium, with a small,
but finite amount of neutral hydrogen (H) in a ratio
nHI/nHII ≤ 10−4 (Rauch 1998). Even though extremely
diluted, this amount of neutral hydrogen is enough to
severely absorb the light of background sources along
cosmological distances, via photoionsation and reso-
nant scattering at the Lyman transitions (cf. Chapter
2).

The first attempts to assess the amount and the distri-
bution of neutral hydrogen in the IGM go back to 1965,
when Gunn & Peterson (1965) first noted that in an ex-

16 The most recent measurement of the primordial helium abun-
dance, usually denoted as Y p, has recently been done by Peimbert
et al. (2007). The quoted value is Y p = 0.2474 ± 0.0028. Previously,
Coc et al. (2004) measured Y p = 0.2479 ± 0.0004, and they also es-
timate D/H = (2.60 +0.19

−0.17) · 10−5, 3 He/H = (1.04 ± 0.04) · 10−5, and
7 Li/H = (4.15 +0.49

−0.45) · 10−10. See also Izotov et al. (2007).
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panding universe with a continuous gas distribution, the
absorption due to H should imprint in the spectra of
background sources an absorption trough blueward of
the Lyα emission line of the source, due to the continu-
ously redshifted photons emitted by the source and the
presence of intergalactic H at each point along the line-
of-sight. They suggested that the amount of H present
in the IGM could in principle be estimated by measur-
ing the relative strength of this so-called Gunn-Peterson
(GP) trough, an method that ever since has become
known as the GP-test. Later that same year, Bahcall
& Salpeter (1965) proposed that a clumpy gas distri-
bution would yield a discrete set of absorption lines on
the spectrum of a background source, each line corre-
sponding to the Lyα line of a clump of absorbing gas. In
the following years, observations of the first discrete ab-
sorption features on the spectra of high-redshift, back-
ground quasars where reported (Greenstein & Schmidt
1967, Burbidge et al. 1968).

These features are composed of hundreds of absorp-
tion lines, which under the assumption of being due
to the Lyα transition of neutral hydrogen, as first pro-
posed by Lynds (1971), made it possible to determine
the redshift of the absorbing entities and conclude that
these were not related to the quasar. Thus, between
two competing scenarios on the distribution and con-
tent of neutral hydrogen in the IGM, a new view of an
Universe slowly emerged, according to which the inter-
galactic medium contains a low-density, highly ionised
gas, with a neutral component which shows large fluc-
tuations in column density. These density fluctuations
become visible against background sources as absorp-
tion lines imprinted on the observed spectra. The enti-
ties giving rise to these absorption features became to
be know ever since as Lyα absorbers.

Hence, when observed spectroscopically, bright
background sources such as QSOs, and more recently
Gamma-ray bursts (GRBs) show a large number of dis-
crete absorption features (some 103) in their spectra.
These absorption lines are mainly due to the resonant
scattering of photons off the line-of-sight due to inter-
galactic neutral hydrogen, with a wavelength that corre-
sponds to the Lyα transition a the epoch of absorption.
In addition to Lyα, higher-order Lyman absorption lines
and absorption lines due to a variety of heavier elements
in different ionisiation stages, such as C, O, Mg, Si, Fe
und Al are found as well. Absorption lines due to Ly-
man resonant scattering are observed in the rest-frame
UV, more specifically in the range (91.2, 121.5) nm, and
deep absorption edges due to photoionisation of H are

observable at wavelength λ ≤ 91.2 nm in the rest-frame
of the source (cf. chapter 2).

In the realm of the cosmological paradigm of struc-
ture formation, these Lyα absorbers are thought to orig-
inate in the filamentary structures of the cosmic web as
the intergalactic gas cools down and falls into the po-
tential wells of dark matter haloes, in large gas haloes
around galaxies, and in the outskirts of (proto-)galactic
disks. Their evolution is driven mainly by the Hubble
expansion, the ionising radiation field from background
quasar and star-forming galaxies, but also by the growth
of structures, by morphological evolution of galaxies,
and by galaxy mergers. Lyα absorbers span a range
in column density 1012 cm−2 . N HI . 1022 cm−2, and
have temperatures of the order of 10 4K. On the basis
of their column densities and metal content, and most
importantly on the basis of their putative origin, three
types of absorbers are distinguished:

4.4.1 The Lyα Forest

The narrow absorption lines imprinted in large numbers
on the spectra of QSOs are caused by low column den-
sity absorbers, are called Lyα forest clouds (Weymann
et al. 1981), and correspond to systems with column
densities in the range 10 12 cm−2 < N HI < 10 17.21 cm−2.
Their measured profiles and strengths (equivalent
widths) are indicative of temperatures around 2 · 10 4K.
Besides, they show some chemical enrichment, wit-
nessed by the presence of weak, but measurable C
lines at redshifts identical to those of the corresponding
Lyα line. Their abundances are estimated to be around
0.1% to 1% Z�. This kind of absorption features are
thought to originate in the gas flowing out from the cen-
tre of voids towards their shells, and along the filamen-
tary structure towards the intersections where the denser
structures form. At all redshifts, some of them may also
arise in galactic winds.

4.4.2 Lyman Limit Systems

The absorbing systems with column densities 1017.21 ≤

N HI < 10 20.3 cm−2 have optical depths τ (λ L) & 1 (see
eq. 2.3) for photons with wavelengths λ ≤ λ L (rest-
frame), i.e. shortward of the Lyman edge, thus pro-
ducing a prominent discontinuity in the observed spec-
trum. For this reason, these absorbers are commonly
refered to as Lyman limit systems (LLSs). These sys-
tems have abundances around a few percent Z�, and are
associated on the basis of their absorption redshifts with
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strong Mg absorption systems with equivalent widths
W (Mg) > 0.3 Å.

Apparently, there seems to be a one–to–one corre-
spondence between strong Mg absorbers and luminous
galaxies, even though there is still some controversy
with respect to this so-called absorber-galaxy connec-
tion (see e.g. Williams et al. 2005, Part 1). Nevertheless,
it is plausible that they originate in the gaseous haloes
of bright galaxies, or at the disk/halo interface (Galactic
corona) of star–forming galaxies.

There is a class of weak Mg systems known as sub-
LLS since no corresponding Lyman break is observed.
These systems typically have abundances around 10%
Z�, a few of them reach a value comparable to Z�.
Some of these systems show Fe absorption, while oth-
ers have C associated with them.

4.4.3 Damped Lyα Absorbers (DLA)

At column densities N HI & 1020.3 cm−2, intergalactic
neutral hydrogen experiences a kind of ”self-shielding”
against the ionising UV background, and remains al-
most completely neutral. The resonant scattering for
photons with λ = 121.5 nm due to neutral hydrogen
with such column densities is dominated by radiation
damping (cf. Sec. 2.2.2). Hence, when the line of sight
to a bright background source happens to intercept an
absorber with a column densities of N HI & 10 20.3 cm−2,
an absorption line with pronounced damping wings be-
comes observable. This type of absorbers, known as
damped Lyα absorbers (DLAs), have relatively high
metallicities (0.01 - 1) Z�, and contain a variety of
chemical elements, such as Zn, Cr, Fe, Mg, N, and
many others.

These column densities are typical for galactic disks,
and indeed, some of these systems show clear evi-
dence for rotation, with v rot ≈ 120 − 240 km s−1. Al-
ready at z ≈ 2 − 4 these systems are fairly massive
(10 10 − 10 11) M�, but very difficult to identify by op-
tical observations. The few systems that have low-
luminosity optical detections show star-formation activ-
ity. Their estimated gas masses roughly equal the com-
bined stellar and gaseous masses of local spiral disks.
Furthermore, It is also well established that DLAs may
also redden and obscure QSOs (Fall & Pei 1989) due
their large content of dust. Hence, DLAs are assumed
to be proto-galactic disks, in which star-formation has
just set on.

Even though they are scarce, DLAs account for most
of the neutral hydrogen in the Universe at all epochs.

There is a subclass of objects with column densities
in the range 1019 cm−2 < N HI . 1022 cm−2 which for a
long time were referred to as sub-DLAs, and were re-
cently proposed to be referred to as super LLS, since
their properties are rather different from those of the
Lyα damped systems (Wolfe et al. 2005, Rao 2005).

An example of a QSO spectrum displaying absorp-
tion due to all three different types of absorbers is shown
in Fig. 4.2.

4.5 PROPERTIES OF THE Lyα ABSORBERS

As briefly mentioned before, the intergalactic neutral
hydrogen present in all types of Lyα absorbers, together
with the baryons trapped in galaxies, trace the distribu-
tion of the underlying Dark Matter. Furthermore, since
the observation and analysis of the Lyα absorption fea-
tures are very useful to probe the evolution of cosmic
gas back to the epoch of reonisation, it is important to
know the baryonic content and physical conditions of
such systems. Also, both Lyα forest clouds, LLSs and
DLAs are known to significantly obscure background
sources (Bechtold et al. 1987, Miralda-Escude & Os-
triker 1990, Møller & Jakobsen 1990, Madau 1991,
1992, Meiksin & Madau 1993, Zuo 1993). It is there-
fore of interest to know the properties of these ab-
sorbers, i.e. the physical parameters that characterise
them, such as their number densities, their (column)
densities, and their temperatures in their evolution in
cosmic time or redshift.. As expected, the determina-
tion of all these properties is far from trivial, and re-
sults highly depend on the quality of the observations
from which they are estimated. In what follows, a brief
review of the formalism used to characterised the Lyα
absorbers and the observational results that are derived
from them are presented.

4.5.1 The proper path length

The description of the absorption due to resonant scat-
tering by H in the intergalactic medium along random
lines-of-sight is greatly simplified if one considers the
evolution of the different properties of the absorbers in
terms of the physical distance d l = c d t. We rederive
here an expression for the physical length as a function
of redshift which will prove very useful in the next sec-
tions.

From the definition of the cosmological redshift

1 + z cosm ≡
a 0

a (z)
, (4.18)
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Fig. 4.2: Spectrum of the quasar PKS0454+039 at z em = 1.34, which shows all different types of Lyα absorbers blueward of
the Lyα emission line of the QSO at λ = 2850 Å: a large number of Lyα forest clouds (weak absorption lines), a Lyman limit
system at λ = 2614 Å, corresponding to z = 1.15, and a damped Lyα systems at λ = 2261 Å (z = 0.86). Note the pronounced
wings of the absorption line of the latter, and the sharp absorption edges due to this system and the LLS at λ = 1696 Å and
λ = 1960 Å, respectively. This spectrum was taken with the Faint Object Spectrograph (FOS) of the Hubble Space Telescope
(HST). Taken from Charlton et al. (2000).

it follows | d a/a| = d z/(1 + z). 17 From this, the defini-
ton of the Hubble parameter (see equation 4.5) and the
chain rule of differentiation one gets 18

H(z) =
1

(1 + z)

∣∣∣∣∣ d z (t)
d t

∣∣∣∣∣ . (4.19)

From both the latter equation and equation (4.12) it fol-
lows that∣∣∣∣∣ d l

d z

∣∣∣∣∣ ≡ c
∣∣∣∣∣ d t

d z

∣∣∣∣∣ =
c

H 0

1
(1 + z)

[
Ω r (1 + z) 4

+Ω m (1 + z) 3 + ΩΛ + Ω k (1 + z) 2
]− 1

2 .

(4.20)

In a matter-dominated universe where the total density
is equal to unity, the above expression becomes (see e.g.

17 For simplicity, let a 0 ≡ 1, which can always be achieved by a
suitable choice of units.

18 If we assume that t = t(z), then strictly speaking H(t) , H(z)
but rather H′(z) ≡ H[t(z)] where H and H′ not necessarily have the
same functional form. However, since this change of variable is done
through all the following equations, we simply let H → H′ and avoid
further notation problems.

Barkana & Loeb 2007)∣∣∣∣∣ d l
d z

∣∣∣∣∣ =
c

H 0

1
(1 + z)

[
Ω m (1 + z) 3

+ΩΛ + (1 −Ω m −ΩΛ) (1 + z) 2
]− 1

2 . (4.21)

where Ω k has been replaced using equation (4.14).
For the special case of a closed Universe and van-

ishing cosmological constant ΩΛ = 0, equation (4.20)
becomes (Gunn & Peterson 1965)∣∣∣∣∣ d l

d z

∣∣∣∣∣ =
c

H 0
· (1 + z)−2 (1 + 2 q 0 z)−

1
2 . (4.22)

as shown in appendix D. However, this expression can-
not be valid in the light of the current cosmological
paradigm, since it assumes a zero cosmological con-
stant and a non-flat universe, i.e. exactly the opposite
of what is observed. For a flat Universe (k = 0) and
ΩΛ , 0, we get for the variation of the physical path
with redshift∣∣∣∣∣ d l

d z

∣∣∣∣∣ =
c

H 0
· (1 + z)−1

[
Ω m (1 + z) 3 + ΩΛ

]− 1
2 . (4.23)
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Fig. 4.3: Comparison of the Lyα absorption on QSO spectra at two different redshifts. The upper panel shows the specstrum
of the QSO Q1422+2309 at z = 3.63, taken with the High Resolution Échelle Spectrograph (HIRES, R = 25, 000 − 85, 000) a

at the Keck 10m-telescope, while the lower panel shows the spectrum of the QSO PG1634+706 at z = 1.33 taken
with FOS (R = 250 − 1300) b at HST. Taken from Charlton et al. (2000). a http://www2.keck.hawaii.edu/inst/hires;
b http://quest.nasa.gov/hst/about/overview.html

4.5.2 The Number Density Evolution along the line-of-
sight

The probability p (N HI, z) of intercepting a single ab-
sorption system at a redshift z and with a column den-
sity in the interval (N HI,N HI + d N HI) in the physical
length interval d l ≡ c d t along a random line-of-sight
can be expressed as

p (N HI, z) ≡ p 0 · (n · σ A) d N HI d l , (4.24)

where
n (N HI, z) = (1 + z) 3 · n 0 , (4.25)

and n 0 = n 0 (N HI, z) is the comoving number density of
absorbers with column densities in (N HI,N HI + d N HI)

at z, and σ A = σ A (N HI, z) is the geometric (effective)
absorption cross-section at (N HI, z).

The normalisation constant p 0 is such that∫
∆l

∫
IN HI

p (N HI, z) d N HI d l !
= 1 , (4.26)

and the integral is computed over an appropriate path
length ∆l and column density interval IN HI . Neverthe-
less, the normalisation constant in equation (4.24) can
be chosen in such a way that it gives the expected num-
ber of absorption systems on a given path along a ran-
dom line of sight and with colum densities in a given
interval. This quantity is a true observable, and as such
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of great value to constrain models for the evolution of
the absorbers. Formally then, the number of absorb-
ing systems with column density and redshift in the in-
tervals (N HI,N HI + d N HI) in the path lengh d l along
a random line-of-sight is given by (e.g. Peterson 1978,
Wolfe et al. 2005)

d N (N HI, z) ≡
∂ 2N

∂ z ∂N HI
d N HI d z

= n0 · σA · (1 + z)3
∣∣∣∣∣ d l

d z

∣∣∣∣∣ d N HI d z ,

(4.27)

Here, the absolute value of d l/ d z is needed, since l is a
decreasing function of redshift, due to the expansion of
the Universe. As shown in previous sections, a general
expression for | d l/ d z|, and hence for equation (4.27),
can be obtained for the particular case of an isotropic
and homogeneous Universe.

It is assumed that along a random line-of-sight, the
probability of finding n absorbing systems is given by a
Poisson distribution

P (n) = e−〈N abs〉
〈N abs〉

n

n!
, (4.28)

where the mean number 〈N abs〉 of systems for each line-
of-sight can be computed from equation (4.27)

〈N abs〉 =

"
∂ 2N

∂ z ∂N HI
d N HI d z ,

In practice, a standard way to characterise the na-
ture of the Lyα absorbers has been to account for their
evolution as a function of redshift, which is usually
parametrized by their line density evolution d N/ d z.
This quantity can be formally defined as the zeroth mo-
ment of the distribution (4.27) with respect to N HI:

d N
d z
≡

∫
∂ 2N

∂ z ∂N HI
d N HI (4.29)

However, the quantity dN is not known a priori and
thus the number density cannot be computed analyti-
cally. Rather, it has to be determined from observations.
The usual method to estimate the number density evo-
lution consists in counting the number of lines observed
in the spectrum of a QSO at a certain redshift zem for a
given transition (in general, the Lyα transition, as it is
the strongest) above a certain column density threshold
(e.g. Peterson 1978, Sargent et al. 1980), and to aver-
age over as many lines-of-sight as possible. This tech-
nique, called line-counting, implies the highly plausible

Fig. 4.4: The number density evolution of the Lyα forest. The
solid and dashed lines correspond to the maximum–likelihood
fit to the data in the interval 0 < z < 1.8 and z > 1.8, respec-
tively.Taken from Kim et al. (2002a, and references therein).

assumption that each absorber gives rise to a single line
for a given transition.

For absorbers with no intrinsic evolution, i.e. whose
evolution is only driven by the Hubble expansion, and
for a flat Universe and ΩΛ , 0 the number density evo-
lution can be written as

d N
d z

=
c

H 0
n 0 · σ A

(1 + z) 2[
Ω m (1 + z) 3 + ΩΛ

] 1
2

, (4.30)

This equations can simply be obtained by combining
equations (4.23) and (4.27).

It is now widely accepted that the evolution of the
absorbers is driven by the expansion of the Universe,
as well as by other factors such as the UV background
(see e.g. Schaye et al. 2000, Bianchi et al. 2001), at
least at high redshift. Hence, the observed evolution of
the number density of absorbers is expected to deviate
from the above expressions. Nevertheless, it is usual to
assume, in analogy to (4.30), that the number density
obeys a power-law of the form

d N
d z

= A · (1 + z) γ , (4.31)

where A is a normalisation factor and the evolution
parameter γ = γ (H 0, Ω m, ΩΛ, . . .) depends on the
adopted cosmology.
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In the literature, there are many determinations of the
evolution parameter and normalisation constants per-
formed in different redshift ranges, with different col-
umn density thresholds, which are rather confusing, and
sometimes contradictory. An extensive compilation of
the range of values found in the literature is given in
Appendix E. Typical values of the normalisation factor
N 0 range from 0.1 to 180, while evolution parameters
γ are found in the range (0.2, 5.7), depending on the
redshift range chosen and the column density interval,
i.e. type of absorber (cf. Appendix E). It has been ar-
gued that a single power-law does not well describe the
evolution of the absorbers at all redshifts and column
densities. Rather, power-laws with different parame-
ters are needed for different column density and redshift
ranges, which point the fact that absorbers with differ-
ent column densities, i.e. of different types (Lyα forest
clouds, LLSs, DLAs) evolve differently (see Fig. 4.4).
This in turn supports the idea that they also have dif-
ferent origins. For the Lyα absorbers, it appears from
observations that around z ≈ 1.8 there is a break in their
evolution, in such a way that they show little or no in-
trinsic evolution in the range 0 < z . 1.8, and strong
evolution at higher redshifts. An illustrative example of
the evolution of the low column density intergalactic H
from high to low redshift seen in QSO spectra is shown
in Fig. 4.3, and the measurements of the number density
evolution in the redshift range 0 < z < 5.3 is shown in
Fig. 4.4. The LLSs, in contrast, show a mild evolution
at 0.5 < z < 4, as can be seen in Fig. 4.5. The optically
thick DLAs evolve rapidly at z > 2, and appear to show
no evolution at low redshifts (see Fig. 4.6).

The measurement of the normalisation and evolu-
tion parameters is complicated because of various rea-
sons. First, the so-called blending, i.e. the overlap of
two or more individual absorption lines, which may be
misidentified as a single, broader line, can affect the
line counts significantly for obvious reasons. Also, line
counting is limited by the instrumental resolution to
column densities NHI ≥ 3 · 10 12 cm−2 (Hu et al. 1995).
A further phenomenon which affects the line counting
and hence the determination of the line evolution is the
inverse effect, also called proximity effect, which de-
scribes the reduction in the line density towards the red-
shift of the quasar (Murdoch et al. 1986). The most
plausible explanation of this effect is that the neutral
H density is reduced in the physical vicinity of the ob-
served QSO due to its ionising radiation field (Bajtlik
et al. 1988, Cristiani et al. 1995). There has also been
reported on a ”galaxy” proximity effect (Weinberg et al.
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Fig. 4.5: The number density evolution of the Mg systems
associated with Lyman limit systems. The solid line repre-
sents the maximul-likelihood fit for an assumed evolution of
the form of equation (4.31), with A = 0.76, and γ = 0.68±54.
Taken from Sargent et al. (1989, and references therein).

Fig. 4.6: The number density evolution of the damped Lyα ab-
sorbers. The three data points at z = 0 are local measurements
from 21cm observations. Taken from Wolfe et al. (2005, and
references therein).

2003), which corresponds to the observational fact that
the incidence of Lyα absorption lines decreases in the
physical vicinity of galaxies. It has been suggested by
these authors that either strong galactic winds diminish
the amount of neutral hydrogen, or that the emission of
Lyα photons effectively replaces the absorbed flux.
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4.5.3 Line profile fitting

As first proposed by Carswell et al. (1984), the absorp-
tion lines seen in quasar spectra can be very well mod-
eled via one- or many-component Voigt profiles (see
sections 2.2.1 and 2.2.2). Hereby, however, a high spec-
tral resolution of R = 10, 000 at λ = 10 nm or higher
is required. The profile fitting is far from trivial, since
it depends on the determination of the flux continuum.
Furthermore, departures from pure Voigt profiles may
arise under certain physical conditions, such as internal
rotation, collapse, galactic outflows, bulk motions, etc.,
which would be hard to detect, even at the highest reso-
lution, but which would give important clues about the
physical conditions of the absorbing medium.

By fitting of a given profile, information about the
column density and Doppler parameter of single ab-
sorbers can be obtained with the help of a curve-of-
growth analysis (cf. Sec. 2.2.2). As in the line-counting
method, the numbers of lines in a different column
density-, Doppler parameter, and redshift ranges are de-
termined and from those, the statistical properties, i.e.
the distribution of the absorbers as a function of these
parameters can be computed. 19

4.5.4 The column density distribution function (CDDF)

The column density distribution function for Lyα ab-
sorbers, which is analogous to the Initial Mass Func-
tion (IMF) for star formation–or the luminosity func-
tion of galaxies (Kim et al. 2001)–can be directly com-
puted from the differential distribution function of ab-
sorbers (eq. 4.27) by integrating over a given redshift
interval 20. However, in order to get rid of the explicit
(1 + z) dependence, it has become customary to intro-
duce a simple change of variables, expressing the red-
shift z in terms of the so-called absorption distance χ
(Bahcall & Peebles 1969, Tytler 1987), which can be
defined by (Wolfe et al. 2005)

d χ ≡
H 0

c
(1 + z) 3

∣∣∣∣∣ d l
d z

∣∣∣∣∣ d z . (4.32)

With this new variable, equation (4.27) becomes

d N (N HI, χ) = f (N HI, χ) d N HI d χ , (4.33)

19 There are several line-fitting algorithms available in the litera-
ture, such as AUTOVP (Davé et al. 1997) or FITLYMAN (Fontana
& Ballester 1995), used to obtain line parameters such as redshift,
column density, and Doppler width from observed absorption Voigt
profiles.

20 In principle, by integrating over [0,∞)

and the column density distribution function (CDDF) is
then defined as

f (N HI, χ) ≡
c

H 0
n 0 [N HI, χ (z)]σ A [N HI, χ (z)] .

(4.34)
An operational definition of the column-density dis-

tribution is given by (Tytler 1987)

f (N HI) =
m

∆N HI
∑

i ∆χ
, (4.35)

where m is the number of absorbers observed in the col-
umn density range (N HI,N HI + ∆N HI) obtained from a
sample of n QSO with total redshift coverage

∑ n
i ∆χ i,

and χ is the absorption distance defined above.
Empirically, a power-law of the form

f (N HI) d N HI d χ = B N HI
−β d N HI d χ , (4.36)

with B ≡ m · (1 − β)/[(N HI)
1−β
max − (N HI)

1−β
min ] is found to

match well the column-density distribution from obser-
vations, as first noted by Carswell et al. (1984) and
later confirmed by many authors (Tytler 1987, Sar-
gent et al. 1989, Lanzetta 1991, Rauch et al. 1992,
Hu et al. 1995, Kim et al. 1997, Kirkman & Tytler
1997, Janknecht et al. 2002, Kim et al. 2002b), and
from simulations (Riediger et al. 1998), with β ≈ 1.51
for over about ten orders of magnitude in column den-
sity, from N HI = 10 12 cm−2 to N HI = 10 22 cm−2. As
mentioned in the previous section, numerical simula-
tions of structure formation based on the ΛCDM cos-
mology predict a similar result. However, it has also
been found that a featureless, single power-law is a
poor fit to the data (e.g. Carswell et al. 1987, Cristiani
et al. 1995, Wolfe et al. 2005), and measured departures
from a single power-law at high column densities, i.e.
N HI > 10 14.3 cm−2 have also been reported in the liter-
ature (Kim et al. 1997, Petitjean et al. 1993). In such
cases, a broken power-law f (N HI, χ) = B (N HI/N b)−β

with β = α 1 for N HI < N b and β = α 2 for N HI ≥ N b

(Penton et al. 2004), or in the case of DLAs a Γ-
function f (N, χ) = B (N/Nb)α exp (−N HI/N b) (Wolfe
et al. 2005) have been found to better fit the
data. The break appears to be always in the range
N HI = 10 14−15 cm−2, and, as noted by Press & Rybicki
(1993), this is most possibly related to the fact that the
Lyα lines saturate precisely at N HI ≈ 10 14 cm−2, which
makes the determination of their column densities quite
uncertain.

A previous, alternative description of the strength
of the absorption lines made use of the equivalent
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width spectrum n (W, z), defined in such a way that
the n (W, z) d W d z gives the number of clouds in an a
given equivalent width interval (W,W + d w) and red-
shift range (z, z + d z). An exponential function, inde-
pendent of z, of the form

n (W) d W =
N∗

W∗
e−W/W∗ d W (4.37)

was found to match well the observations by Sargent
et al. (1980), Young et al. (1982), Murdoch et al.
(1986). Here, N∗ and W∗ are constants with typical val-
ues W∗ = 0.362 ± 0.021 Å and N∗ = 154 ± 11 (Sargent
et al. 1980). However, this approach has the drawback
of lacking information about the physical state of the
absorbers, which is coded in the quantities N HI and b,
and whose relation to W can be ambiguous.

It was first shown by Murdoch et al. (1986) that the
exponential distribution (4.37) is mapped into a power-
law distribution in N HI

n (N HI) = B N−s d N HI , (4.38)

where s = 1 + k/W∗, for equivalent widths in the
logarithmic part of the curve of growth 21 for which the
equivalent width W is related to the column density N HI
for any given value of the Doppler parameter b by

W = k ln(N HI/N∗) , (4.39)

with k = k (b).
This can easily be shown by requiring that

n(W)dW !
= n(NHI)dNHI , which is equivalent to

n (N HI) d N HI = n [W(N HI)] d N HI

∣∣∣∣∣ d W
d N HI

∣∣∣∣∣ . (4.40)

Using the equation (4.39) yields

d W
d N HI

=
k N∗

N HI
, (4.41)

and plugging into equation (4.38) it finally follows that

n (N HI) d N HI =
k

N HI

(N∗) 2

W∗
e−

k
W∗ ln(N HI/N∗)

= B N HI
−(1+k/W∗) , (4.42)

with B ≡ k (N∗) 2/W∗.
Thus, both approaches are to some extent equivalent.

However, the description of the Lyα absorbers in terms
21 For Lyα, this range corresponds to equivalent widths in the range

W ∈ (0.3, 1.0)Å

Fig. 4.7: Column density distribution function (CDDF) of the
Lyα absorbers at different redshifts for various compilations.
The dotted line represents the CDDF from Hu et al. (1995),
f (N HI) = 4.9 · 10 7 N HI

−1.46. Taken from Kim et al. (2002a,
and references therein).

of their column–density distribution is the most suitable
since it is directly related to the physical properties of
the absorbers. The best estimate of the parameters B
and β seems to be that of Hu et al. (1995):

f (N HI) = 4.9 · 10 7N HI
−1.46 , (4.43)

which describes quite well the observations over a
large column density range, as can bee seen in Fig. 4.7.

It has become the practice to include the number den-
sity evolution of the Lyα aborbers (equation 4.31) and
the column density distribution function (equation 4.34)
into one single expression of the form

f (N HI, z) = N 0 · (1 + z) γ · N HI
−β . (4.44)

Here N 0 is a normalization constant, chosen in such a
way that

d N
d z

!
=

∫
I N HI

f (N HI, z) d N HI , (4.45)
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where the left-hand-side is given by equation (4.31),
and I N HI is an appropriate column–density interval. The
function (4.44) defines the 1-dimensional distribution of
the H in the IGM probed by a random line-of-sight.

Using equation (4.33), the mean number 〈N abs〉 of
systems for each line-of-sight can be expressed as

〈N abs〉 =

∫
Iz

∫
I N HI

f (N HI, z) d N HI d z , (4.46)

where, the integral is carried out over appropriate
redshift- and column density intervals I z and I N HI , re-
spectively. These intervals are usually constrained from
observations. It is common however to group the ab-
sorbers into column density ranges corresponding to the
empirical classification in Lyα forest, LLSs, and DLAs,
giving for each class an evolution function of the form
of equation (4.44). An example of such a set of distribu-
tion functions is shown in chapter 6, section 6.3, table
6.1.

4.5.5 The Doppler parameter distribution

The Doppler parameter, as mentioned in 2, is defined as

b =

√
2 k T
mH

. (4.47)

where mH is the mass of the hydrogen atom 22. A very
useful relation can be obtained by substitution of the
values for k and mH in the above equation, leading to

b [ km s−1] = 0.128 ·
√

T [K] . (4.48)

The values of the Doppler parameter b for intergalac-
tic neutral hydrogen are usually obtained from line pro-
file fitting, in which the pair of values (N HI, b) that
leads to the best fit and best reproduces the measured
equivalent width of the line is estimated using curve-
of-growth analysis and a minimisation technique, e.g.
χ 2-minimisation. 23 In what follows, a brief review of
the range of values for b found to date is given.

Some of the first determinations of the widths of the
Lyα lines imprinted on the spectra of QSO were per-
formed by Carswell et al. (1984), who found typical
values for b in the range (10, 45) km s−1, which accord-
ing to the above expression correspond to temperatures
in the range 10 4 K < T < 10 5 K. Later on, a narrower b

22 mH = 1.673 · 10−27kg
23 This technique, although rather common, is in the words of Press

& Rybicki (1993), ” [. . . ] a somewhat controversial subject.”

distribution peaking at values 17 km s−1 and not extend-
ing beyond 30 km s−1 was found by Pettini et al. (1990),
while a couple of years later a broad distribution, peak-
ing at values in the range 30 − 40 km s−1 and a tail ex-
tending to higher velocities was reported by Rauch et al.
(1992). In particular, these last authors found a me-
dian of b = 33 − 35 km s−1 for N HI > 1013.3 cm−2. As
they pointed out, the b values in excess of 20 km s−1

may be due to blends of unresolved narrow lines with
b ≈ 20 km s−1. Otherwise, those larger values may in-
dicate non-thermal bulk motions. In this case, high-
resolution, high S/N observations should show asym-
metries or other departures from pure Voigt profiles.
The first step towards solving this controversy was
made by Press & Rybicki (1993), who proposed the b
distribution to be a truncated Gaussian:

p (b) d b ∝

exp
[
−

(b−b 0) 2

2 b 2
∗

]
d b , b > 0

0 , b < 0

or a gamma function of the form

p (b) d b ∝ b(b 0/b∗)−1 exp
(
−

b
b∗

)
d b , b > 0 ,

(4.49)
with b 0 the (mode) mean of the (truncated) distribu-
tion and b∗ the standard deviation. They found that
the b-distribution derived from observations is consis-
tent with a broad b-distribution, most probably a trun-
cated Gaussian with a mean around 37 km s−1, imply-
ing that a significant component of b is due to bulk mo-
tion, or that the absorbing systems are not in equilib-
rium and significantly hotter than implied by their ioni-
sation state.

Further analyses reported a peak value of b =

23 km s−1 corresponding to a thermal temperature T =

3.2 · 104 (Cristiani et al. 1995), and confirmed that
the b distribution is well represented by a truncated
Gaussian with a mean around 28 km s−1 and σ b =

10 km s−1 (Hu et al. 1995). These authors also find
that the b-distribution is rather invariant as a function
of N HI. Later on, Kim et al. (1997) found that the b-
distribution evolves with redshift, where the (mean) b
value increases with decreasing redshift, a result that is
in agreement with CDM numerical simulations (Riedi-
ger et al. 1998). Kim et al. (1997) established from
observations that the distribution of Doppler parame-
ter for the absorbing systems is well described by a
truncated, Gaussian with a median around 35 km s−1,
a dispersion σ(b) ≈ 12 km s−1, and a truncation below
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bc ≈ 24 km s−1 at z = 2.31, and they also found that
this values evolve slightly with redshift. In a later work,
Kirkman & Tytler (1997) found that the lower cut-off in
the b-distribution increases with N HI, while Kim et al.
(2001) found that it increases with decreasing redshift
for a fixed N HI. They also found that the b-distribution
is well fitted by a Gaussian with 〈b〉 = 23 km s−1 and
σb = 14 km s−1. Bershady et al. (1999), for example,
adopt from Kim et al. (1997) the following parametriza-
tion: 〈b〉 = −3.85 z em+38.9 km s−1, σ(b) = −3.85 z em+

20.9 km s−1 and bc = −6.73 z em + 39.5 km s−1 for ab-
sorbers in the redshift range z ∈ (1.75, 5).

However, Hui & Rutledge (1999) find a parametriza-
tion of the b distribution in the form

d N
d b

= b 0
b 4
σ

b 5 exp
(
−

b 4
σ

b 4

)
, (4.50)

where N is the number of absorption systems, b 0 is
a normalisation constant, bσ is a pameter related to
the average amplitude of the fluctuations in the opti-
cal depth (see Kim et al. (2001) for values of these pa-
rameters derived from observations). From Kim et al.
(2001), we compute 〈b 0〉 = 7.24, 〈bσ〉 = 24.11 for ab-
sorbers in the redshift range 〈z〉 ∈ [1.61, 3.75].

Interestingly, there is also an on-going debate on a
possible correlation between N HI and b. For exam-
ple, Cristiani et al. (1995) find a deficit of lines with
b < 20 km s−1 for absorbers with N HI > 1013.5 cm−2.
However, Rauch et al. (1992) find no evidence for any
significant b−N HI correlation. Supporting the latter re-
sult, Hu et al. (1995) find the b-distribution to be quite
invariant as a function of column density. In a recent
paper, Williger et al. (2006) report a Doppler distribu-
tion for low- and high-column density absorbers at low
redshift with mean, median, and standard deviations
of {44, 44, 22} km s−1 and {47, 47, 21} km s−1, respec-
tively. Also, Lehner et al. (2006) find that, for Broad
Line Absorbers (BLA)–which correspond to absorbers
with b > 40 km s−1 which are thought to compose the
so-called warm-hot intergalactic mediums (WHIM)–,
the b values appear to decrease with increasing N HI.
These results are nevertheless contradictory, and this
controversy has not been clarified to date.

Assuming that the b–distribution is well defined
by its mean, and dispersion values, it appears that all
of the measurements mentioned above are roughly
compatible with each other. There is still no consensus
on the best parametrization for the b-distribution, and
thus in this work, and for the sake of simplicity, we will
adopt two different b-distributions for the attenuation

models presented in the next chapters: Following
Madau (1995), we will assume a constant Doppler
parameter of b = 35 km s−1; and we will also explore
the effect of assuming that the b-distribution is given
by a truncated Gaussian distribution as reported by
Bershady et al. (1999).

There are two further quantities that characterise the
Lyα absorbers, and more precisely, the intergalactic
neutral hydrogen: the mean optical depth, and the cos-
mic flux decrement.

4.5.6 The mean optical depth or effective optical depth

The optical depth, as a function of wavelength, is given
by (Press et al. 1993)

τ (λ) = − ln
(

fobs(λ)
fc(λ)

)
, (4.51)

where fc is the continuum level and fobs the observed
flux.

The mean optical depth is usually parameterised as

τ (z) = A (1 + z)γ+1 , (4.52)

where A is a normalisation constant and γ is the same
evolution parameter as for the number density of lines
(eq. 4.31). It has been found by Press et al. (1993) that
γ = 2.46 ± 0.37 and A = 0.0175 − 0.0056 γ ± 0.0002
for absorbers in the redshift range 2.5 < z < 4.3.

Since the mean optical depth cannot be determined
for fobs ≈ 0, a further quantity of interest is the so-called
effective optical depth, defined by

τeff = − ln
(
〈e−τ〉

)
, (4.53)

where the brackets denote the mean value av-
eraged over the wavelength range of interest
(in principle, in the range [0,∞)). Kim et al.
(2001) find that the effective optical depth can
be parametrized in the form of equatiion (4.52)
with τeff (λ) = (0.0030 ± 0.0008) (1 + z)3.43±0.17

for 1.5 < z < 4, using a sample of 3 QSOs ob-
served with VLT/UVES. This result was verified
by Kim et al. (2002b), who increased the former
sample to a total of eight QSO and found that
τeff (λ) = (0.0032 ± 0.0009) (1 + z)3.37±0.20 for the same
redshift interval.

The mean or effective optical depth is a measure for
the amount of neutral hydrogen present at a given red-
shift, and its determination is of particular interest with



4.5 Properties of the Lyα absorbers 45

Table 4.2: Geometry of Lyα absorbers, inferred from observations along the lines-of-sight to QSO pairs and/or to multiple
images of one and the same lensed QSO (Rauch 1998).

N HI . 1014 cm−2 1014 cm−2 . N HI . 1016 cm−2 N HI & 1016 cm−2

thin and extended filamentary spherical

100 h−1 kpc − 1 h−1 Mpc 40 − 100 h−1 kpc 1 h−1 kpc

(length) (width) (radius)

respect to the estimate of the total amount of baryonic
matter, and also in order to pin down the epoch of reion-
isation. The optical depth at the epoch of reionisation
thus constrains models for the evolution of the Uni-
verse, in particular, it is one of the six free parameters
of the ΛCDM model.

4.5.7 Cosmic flux decrement

The cosmic flux decrement is a useful quantity, in par-
ticular if the available resolution of the observed spectra
is relatively low, i.e. ∆λ ≈ 1 nm. It is defined as (Oke &
Korycansky 1982)

DA ≡

〈
1 −

fobs

fc

〉
. (4.54)

The average is computed per definitionem in the rest-
frame wavelength range (102.5, 121.6) nm, i.e. be-
tween the Lyα and the Lyβ emission lines. The cosmic
flux decrement can be viewed as the equivalent width
of the total absorption in the above range. It effectively
measures the depression of the observed flux f obs with
respect to the continuum f c, as e.g. extrapolated from
the red wing of the Lyα emission line to the range blue-
ward of it. A widely adopted form for the extrapolated
continuum is a power-law with spectral index α. The
uncertainty of the extrapolated continuum is the main
drawback of this method. However, at sufficient resolu-
tion, it turns out to be very useful when estimating the
amount of baryons contained in the IGM as a function
of redshift. 24

4.5.8 Structure of the Lyα Forest

The ”true” structure of the Lyα forest is still a matter
of debate, even though a significant amount of knowl-
edge has been gained in the last decades, especially

24 See chapter 6 for a detailed analysis of the evolution of D A.

through the observation of QSO pairs and the analysis
of the absorption seen along their corresponding lines-
of-sight, or through observations of absorption systems
along the line-of-sight to multiple images of one and
the same QSO due to gravitational lensing. These
studies show that Lyα forest clouds are clustered on
scales 30 − 50 h−1 Mpc, and 60 − 130 h−1 Mpc (Rauch
1998).

Furthermore, it has been found that the geometry of
the absorbers is correlated to their column density. Ab-
sorbers with column densities N HI & 1016 cm−2 have
a spherical geometry while filamentary structures typ-
ically give rise to absorption lines that correspond to
column densities in the range 1014 cm−2 . N HI .
1016 cm−2. Absorbers with column densities N HI .
10 14 cm−2 are rather thin and extended. Thus, Lyα for-
est absorbers are filamentary and/or extended, typically
30 h−1 kpc across and with lengths around 1 h−1 Mpc
(Rauch & Haehnelt 1995, see Table 4.2).

The distribution of Lyα absorbers along the line-of-
sight shows large voids (e.g. Pierre et al. 1988, Duncan
et al. 1989, Dobrzycki & Bechtold 1991), and the ab-
sorbers trace the large-scale distribution of the luminous
matter (i.e. of galaxies) at low redshift. However, the
correlation between absorbers and galaxies, especially
at high redshift, is still controversial. In some cases,
a correlation between tidal arms or galactic winds and
absorption features has been found (see e.g. Williams
et al. 2005, Part 1), but most of the Lyα forest sys-
tems seem to originate in filamentary structures or H
clouds with little or no star-formation activity. Their
low abundances imply that no or, at most, very little
star-formation can have taken place in them.





CHAPTER 5

Modelling the absorption of light in the intergalactic
medium: The Monte Carlo Approach

The intergalactic neutral hydrogen randomly dis-
tributed along the line-of-sight to a distant source, (e.g.
quasar, galaxy) absorbs some its light and affects its
spectrum in a way that is by no means trivial: on the one
hand, the absorption is wavelength-dependent due to the
energy dependence of the resonant transitions, and on
the other, it is highly sensitive to the distribution and
properties (temperature, density) of the absorbing hy-
drogen, as we have seen in Chapter 2 on the dependence
of the absorption coefficient on the Doppler parameter
and the column density. We already advanced in Chap-
ter 4 that It is of particular importance to account for
the absorbing effect of the intergalactic neutral hydro-
gen, also called intergalactic attenuation, when mod-
elling galaxy spectra to correctly interpret observations.
A brief review on the subject will be given in the intro-
duction of the next chapter.

In this chapter, we focus on a detailed description of a
model for the intergalactic attenuation that we have de-
veloped on the basis of the models of Møller & Jakob-
sen (1990), Madau (1995) and Bershady et al. (1999).
The main goal here is to account for the stochastic ab-
sorption due to the random distribution of H and its
properties. In the next chapters, we will apply this
model to account for the evolution and scatter of the
cosmic flux decrement, and to asses its impact on the
photometric properties of galaxies.

5.1 THE PATH OF RADIATION THROUGH THE
IGM

A photon with wavelength λ γ that is emitted at red-
shift z em will loose energy, i.e. will be redshifted on
its way as a consequence of the expansion of the Uni-
verse. Hence, the photon will be observed at a wave-
length λ obs, where

λ obs = λ γ · (1 + z em) . (5.1)

If the photon happens to encounter an H absorber at
redshift z abs, and assuming no broadening mechanism
in the absorbing medium of any kind, the photon will
be scattered if and only if its wavelength at the redshift
of the absorber happens to match the wavelength cor-
responding to one of the resonant transitions of H, i.e.
if

λ j = λ γ · (1 + z abs) , (5.2)

where the subscript j refers to the Lyman transitions
{α, β, γ, . . .} (cf. Chapter 2). Due to the effect of broad-
ening, however, the photon will be scattered off the line-
of-sight with a probability given by the absorption co-
efficient (2.21) evaluated at λ = λγ · (1 + z abs). Photons
emitted with energies λ γ ≤ λ L/(1 + z abs) will ionise the
hydrogen atoms of the absorber with a probability given
by the photionisation cross-section (2.3). Thus, a source
at redshift z em emitting a photon flux f em (λ) which en-
counters an absorber at redshift z abs along the line-of-
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sight will be observed to have a flux at z = 0 given by

f obs (λ obs) =
f em (λ em)
1 + z em

e−τ (λ abs) , (5.3)

where λ obs, λ em and λ abs are the observed wavelength,
the emitted wavelength, and the wavelength at absorp-
tion, respectively. These are related by

λ obs = λ abs · (1 + z abs) = λ em · (1 + z em) . (5.4)

The factor (1 + z em)−1 in equation (5.3) is a conse-
quence of the expansion of the Universe and the re-
quirement that the flux be conserved. The absorption
coefficient τ is given by the sum of the photionisation
cross-section and the individual absorption coefficients
for each transition, i.e.

τ (λ) = τ phot (λ) +
∑

j

τ j (λ) , (5.5)

where τ phot and τ j are given by equations (2.14)
and (2.21), respectively, and the sum is over all tran-
sitions. The effect a single absorber on a constant spec-
trum f λ normalised to unity is illustrated in Fig. 5.1.
In this example, the absorber has a column density
N HI = 10 17.22 cm−2, which corresponds to an optical
depth slightly higher than unity at the Lyman edge, and
a Doppler parameter b = 36 km s−1. We include the first
25 Lyman transitions. Worth noting is the strong flux
depresion at wavelengths 913 < λ < 914 Å as a conse-
quence of the cumulative absorption and the blending
of the higher-order transitions. This, however, is in part
due to the finite resolution of the spectrum.

It is now easy to see that the flux emitted at all wave-
lengths by a background source will be absorbed at a
discrete set of wavelengths for each absorber along the
line-of-sight. If the intergalactic neutral hydrogen were
uniformly distributed along the line-of-sight, the con-
tinuously redshifted radiation would encounter a scat-
tering atom at every point, producing an absorption
trough in the observed spectrum. This is the so-called
Gunn-Peterson trough, mentioned in Chapter 4. How-
ever, the absence of such a trough in QSO spectra up
to redshifts z em > 6 points to the fact that intergalactic
neutral hydrogen is not uniformly distributed, at least
not after the reionisation epoch, as explained in previ-
ous chapters.

The effect of a population of absorbers along the line-
of-sight is computed in a similar manner as (5.3). In this
case, the full set of parameters {z abs, N HI, b}N abs , ie the

absorber redshift, the column density, and Doppler pa-
rameter characterising each absorber is required. As-
sumig this to be given, the flux observed at z = 0 of a
source at z em with an intrinsic flux f em is given by

f obs (λ) =
f em [λ/(1 + z em)]

1 + z em
Φ (λ) , (5.6)

where the quantity Φ is the transmission factor and is
given by

Φ (λ) ≡
N abs∏
i=1

exp[−τ (λ/(1 + zi)] . (5.7)

Here, z i is the redshift at the epoch of absorption1, and
N abs is the number of absorbers encountered along the
line-of-sight.

5.2 GAMBLING WITH THE Lyα ABSORBER PA-
RAMETERS

In order to account for the absorption of the flux of a
source at a given redshift along a random line-of-sight, a
detailed model of the distribution of intergalactic H and
its properties (z abs, N HI, b) is needed. More precisely,
the exact number of absorbers along a particular line-of-
sight and the parameters characterising each absorber
need to be known. As already explained in the previous
chapter, the distribution of the intergalactic neutral hy-
drogen and its physical properties are constrained from
observations and given in a statistical sense by the den-
sity distribution functions of the form of equation (6.4).
A possible approach to model the absorption along ran-
dom line-of-sight is thus to generate a large number of
synthetic lines-of-sight, each of which shall be charac-
terised by a unique population of absorbers. A partic-
ular population is completely defined by the total num-
ber of absorbers N abs, and the set of their parameters
{z abs, i, N HI, i, b i} i=1,...,N abs .

The natural choice for the realisation of this ap-
proach is the performance of numerical simulations
which make use of the Monte Carlo method, as has
been done by several authors (see e.g. Møller & Jakob-
sen 1990, Giallongo et al. 1990, Cristiani et al. 1993,
Bershady et al. 1999). This method is suitable for the
analysis of the behaviour of a complex random variable
whose distribution function is not known. In our case,

1The reader shall bear in mind that τ in equation (5.7) is in general
different for each absorber. However, we do not write this explicitly
by e.g. introducing a new subscript in order to avoid confusion.
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Fig. 5.1: Effect of a single absorber on an input spectrum f λ = const. normalised to unity. The absorption includes the
photoionisation and the first 25 resonant Lyman transitions, but only those from Lyα to Lyτ are indicated for simplicity. The
absorber parameters are (N HI, b) = (1017.22 cm−2, 36 km s−1). Wavelengths are given in the absorber restframe. Note the
strong absorption at wavelengths redward of the Lyman edge due to the blending and the cumulative effect of the highest order
transitions. This effect is in part due to the finite resolution of the spectrum.
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we want to analyse the behaviour of the transmission
factor Φ (equation 5.7). This quantity is a composite,
and certainly, complex random variable which depends
through the optical depth on the random variables N HI,
z abs, and b. The dependence of Φ on these variables is
rather complex, and an analytical expression for the dis-
tribution function for it is completely out of sight, even
though there are special cases for which this is possible
(see e.g. Madau 1995, and references therein) 2

The good news is that the distribution function of
each of the variables on which the transmission co-
efficient Φ depends is known. Hence, the behaviour
of the transmission coefficient for a given redshift z em

can be analysed by generating random sets of values
{z abs, N HI, b} and evaluating with them equation (5.7).
The ensemble of different realisations of Φ computed in
this way effectively mimics the absorption of light due
to intergalactic neutral hydrogen along random line-of-
sight, as long as the distribution functions (4.31), (4.36),
and (5.22) (see below) are accurately determined from
observations.

This procedure assumes that the random variables
z abs, N HI, and b are statistically independent. Apart
from a possible weak correlation between b and N HI,
mentioned in section 4.4, it appears as if they truly are
independent from each other. Furthermore, we assume
that random numbers distributed according to (4.31),
(4.36), and (5.22) can be generated. That this is indeed
the case is briefly explained in the next section.

5.2.1 Some Notes on ”arbitrarily”–distributed random
numbers

From the theory of probability it is known that, given a
random variable X distributed according to P X , another
(arbitrary) random variable Y , which is a function of the
former, i.e. Y = Y (X) , is distributed according to 3

P Y (y) = P X [x (y)]
∣∣∣∣∣ d x

d y

∣∣∣∣∣ (y) . (5.8)

In other words, the transformation f : x 7→ y (x) invo-
ques the functional transformation F : P X 7→ P Y .

This is an inverse problem and in general it is very
difficult to find the transformation y = y (x) for arbitrary
functions P X and P Y . Nevertheless, there are special

2We will show in the the next chapter that it is possible to deter-
mine analytically the form of the distribution function for Φ using
mathematical and physical arguments.

3 This follows directly from the normalization condition of a prob-
ability distribution and the chain-rule.

cases of great interest in which this problem can be
solved exactly.

Let X be a uniformly distributed random variable on
the interval [0, 1]. The corresponding distribution func-
tion is given by

P X (x) = Θ (x) · θ (1 − x), (5.9)

where the so-called Heaviside-Function Θ (x) is defined
as

Θ (x) =

0 , x < 0
1 , x ≥ 0

In this particular case, equation (5.8) becomes

P Y (y) = θ [x (y)] · θ [1 − x (y)]
∣∣∣∣∣ d x

d y

∣∣∣∣∣ (y) ,

or
P Y (y) =

∣∣∣∣∣ d x
d y

∣∣∣∣∣ (y) (5.10)

for x (y) ∈ [0, 1].
For a given probability distribution P Y , all one has

to do is to integrate equation (5.10) in order to find the
transformation x = x (y), so that Y is distributed accord-
ing to P Y , with X uniformly distributed on the intervall
[0, 1]. In other words, writing

F (y) =

∫ y

y min

P Y (y′) d y′ , (5.11)

where y min is the minimum value that the variable Y
takes on, it follows that

y (x) = F −1 (x) . (5.12)

Note that the range of this transformation has
to be chosen in such a way that F(y) ∈ [0, 1] for
y ∈ [y min, y max], where y max is the maximum value of y.
Nevertheless, this is automatically guaranteed by equa-
tion (5.11) since P Y should be normalised.

Power–law distributions

Generally, a (distribution-) function of the form

P (x) = C · xα, C > 0, α ∈ R , (5.13)

where C is a normalization constant, is called a power-
law (distribution-) function.

This type of distribution very often appears in phys-
ical problems, for example, in the description of the
distribution of neutral hydrogen clouds along random
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lines-of-sight in the intergalactic medium, as mentioned
in chapter 4. It is thus of interest for the present work
to briefly show here some useful results related to this
kind of distribution, such as a general expression for
the normalization constant C and the way in which ran-
dom numbers distributed according to (5.13) for arbi-
trary real values of α may be generated. This last point
is essential for the numerical simulations of the effect
of Lyα absorbers on the spectra of background sources
(quasars, galaxies, etc.) that we will present.

Let X be a random variable distributed according to
(5.13) in the intervall [a, b]. It follows, by the require-
ment that the probability density be normalised, that

1 !
=

∫ b

a
P (x) d x = C ·

[
1

1 + α
x 1+α

∣∣∣∣ b

a

]
(5.14)

for α , −1, and

1 !
=

∫ b

a
P (x) d x = C ·

[
log x

∣∣∣∣ b

a

]
(5.15)

for α = −1 and 0 < a, b < ∞. In these cases it follows
that

C = (1 + α)
[
b 1+α − a 1+α

]−1
, (5.16)

and
C =

[
log b − log a

]−1 , (5.17)

respectively. In what follows we will only consider this
first case, since the power-law distribution functions re-
lated to the properties of intergalactic H all satisfy the
requirement α , −1 (cf. Sec. 4.4).

Generating power-law-distributed random numbers

According to what was presented in the last section, one
can easily find a transformation y = y (x) for a random
variable Y distributed according to equation (5.13).

Let us assume that y ≥ 0, i.e. the range of values that
the variable Y takes on is semi-positive. It follows, ac-
cording to equation (5.11), that

F(y) =

∫ y

y min

P Y (y′) d y′ = C ·
1

(1 + α)

[
y 1+α − y 1+α

min

]
,

where y min ≤ y ≤ y max, and the normalization constant
C is given by equation (5.16),

C = (1 + α)
[
y 1+α

max − y 1+α
min

]−1
. (5.18)

Furthermore, we get from equation (5.12) that

y (x) = F −1 (x) =

[
(1 + α)

C
x + y 1+α

min

] 1
1+α

. (5.19)

By substituting C into this last equation one finally
gets

y (x) =
[
y 1+α

max x + y 1+α
min (1 − x)

] 1
1+α . (5.20)

It is easily seen from this equation that y (x) takes val-
ues in the intervall [y min, y max] when x takes values in
the intervall [0, 1]. Furthermore, since 0 ≤ x ≤ 1 and
y min and y max are both semi-positive, the argument of
the root in expression (5.19) is always semi-positive,
and therefore this expression is well defined for all
α ∈ R+. In other words, there is no restriction for α
except for being real and positive. 4 Equation (5.20) is
thus the desired transformation for a random variable X
uniformily distributed in the intervall [0, 1], in order to
generate a random variable Y distributed according to
P Y (y) = C · yα in the intervall [y min, y max].

5.3 NUMERICAL SIMULATIONS OF THE INTER-
GALACTIC ATTENUATION

We finally have all the ingredients for our model of the
intergalactic attenuation, which we briefly summarize
here.

The population of Lyα absorbers along a random
line-of-sight to a distant source at a redshift z em is char-
acterized by its number density distribution d N/ d z, its
differential distribution function f (N HI), and the distri-
bution of its Doppler parameter (cf. Sec. 4.4). The
number density distribution, which gives the number of
absorbers per unit redshift, is usually parameterized as
(equation 4.31)

d N
d z

= A · (1 + z) γ ,

where A is a constant and γ is called the evolution pa-
rameter, since it gives the rate of evolution with redshift
of the Lyα absorbers.

The differential distribution function gives the num-
ber of absorbers per unit redshift path and per unit col-
umn density, as a function of column density. It is em-
pirically given by (equation 4.36)

f (N HI) = B N HI
−β ,

where B is a normalization constant and χ is the redshift
path as defined by equation (4.32). Both these equations

4 The case α = 0 is excluded for obvious reasons, namely, the fact
that a power-law distribution with α = is trivially a uniform distribu-
tion.
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are valid for any given b-distribution. Thus, for the mo-
ment, we assume the Doppler distribution p (b) to be an
arbitrary probability distribution function normalised to
unity, i.e. ∫ ∞

0
p (b) d b = 1 . (5.21)

For instance, the Doppler parameters may be distributed
according to (cf. section 4.4)

p (b) = Θ (b − b trunc) ·
1

√
2 πσ 2

e−
1

2σ 2 (b−µ) 2
(5.22)

i.e. that they show a Gaussian (normal) distribution
truncated below b trunc.

The composite distribution function for the parame-
ters (z abs, N HI, b) of the absorbers along a random line-
of-sight is thus given by (equation 4.44)

N (z,N HI) d z d N HI = N 0 · N HI
−β (1 + z) γ d z d N HI .

where the b-values are distributed according to p (b).
The expected number of Lyα absorbers within a

given column-density intervall [N min, N max] out to z em

is given by (equation 4.46)

〈N abs〉 (z em) =

∫ z em

0

∫ N max

N min

N (z,N HI) d z d N HI . (5.23)

The division into different column-density intervals
is important because of the fact that the evolution of
absorbers with different column densities, i.e. the evo-
lution of the different types of absorbers (Lyα forest,
LLSs, DLAs) is different with redshift (see section 4.4).

5.4 COOKBOOK FOR A LINE-OF-SIGHT WITH A
RANDOM POPULATION OF Lyα ABSORBERS

Given all the ingredients listed in the last section, all
we need now to complete the model is random num-
ber uniformly distributed. The are several algorithms
in the literature with which so–called pseudo-random
numbers uniformly distributed in the interval [0, 1] can
be generated. In particular, we use here the subroutines
ran1 and ran3 from the Numerical Recipes. Assuming
that we have a random variable X uniformly distributed
on the intervall [0, 1], the absorption due to intergalactic
H by applying the Monte Carlo method can be modeled
following these steps:

1 Compute the average number of absorbers 〈N abs〉

out to a given redshift z em and in a given column density
range according to equation (5.23). Using the results
from last section, it follows by direct integration of this
equation that

〈N abs〉 (z em) = N 0 ·
(
C z ·C N HI

)−1 , (5.24)

where

C z ≡
1 + γ

(1 + z em) 1+γ − 1
, (5.25)

and

C N HI ≡
1 − β(

N HI,max

) 1−β
−

(
N HI,min

) 1−β . (5.26)

2 Compute the actual number of absorbers N abs along
the ith line-of-sight by drawing from a Poisson dis-
tribution with paramter 〈N abs〉. For this purpose, we
make use of the algorithm poidev to generate Pois-
son distributed random numbers given by the Numer-
ical Recipes.

3 Assign to each absorber a set of parameters
(z abs, N HI, b) , where the column density N HI and the
absorption redshift z abs are drawn from a distribution
of the form of equation (6.4), integrated over [0, z em]
and the corresponding column–density interval, respec-
tively. Again, it is straightforward from equations
(5.19) and (5.18) that the redshift is given by

z abs (x) =

[
(1 + γ)

C z
x + 1

] 1
1+γ

− 1 (5.27)

In a similar manner, the column density N HI can be
computed from

N HI (x) =

[
(1 − β)
C N HI

x +
(
N HI,min

) 1−β
] 1

1−β

. (5.28)

The Doppler parameters are distributed among the ab-
sorbers according to p (b).

4 Compute the absorption on a particular model
galaxy input spectrum f λ according to equations (5.6)
and (5.7)
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5 Repeat the procedure for as many lines-of-sight as
desired

The number of lines-of-sight in the ensemble is to
some extent arbitrary, but in order to get reliable re-
sults, a number of lines-of-sight N los ≥ 10 3 is a good
choice. In order to improve the statistics, we choose
N los ≥ 4 · 10 3 through all the work that follows.

An application of the method just described to the
modelling of the cosmic flux decrement (see chapter 4)
is given in the next chapter. The effect of the intergalac-
tic absorption due to H on the photometric properties
of galaxies is accounted for using this model in chap-
ter 7. Also, in this chapter, the model galaxy spectra
used are described. Furthermore, in both these chapters
the different sets of input distribution functions of the
absorbers properties are presented.





CHAPTER 6

Stochastic Absorption of the Light of Background
Sources due to Intergalactic Neutral Hydrogen
I. Testing different line-number evolution models via the cosmic flux decrement

The contents of this chapter are on the review stage prior to publication.
They can be found as Tepper-Garcı́a, T. & Fritze, U. 2007, ArXiv e-prints, 705

ABSTRACT

We test the accuracy of different models of the attenu-
ation of light due to resonant scattering by intergalac-
tic neutral hydrogen by comparing their predictions of
the evolution of the mean cosmic flux decrement D A
to measurements of this quantity based on observa-
tions. To this end, we use data available in the literature
and our own measurements of the cosmic flux decre-
ment for 25 quasi–stellar sources in the redshift range
2.71 < z em < 5.41 taken from the SDSS Data Release
5. In order to perform the measurements of D A, we fit a
power–law to the continuum redward of the Lyα emis-
sion line, and extrapolate this fit to region blueward of
it, where the flux is severely affected by absorption due
to intervening H absorbers.

We compute, using numerical simulations, the red-
shift evolution of the mean flux depression, D A(z), due
to the presence of Lyα Forest absorbers and Lyman
limit systems randomly distributed along the line-of-
sight, and compute its intrinsic scatter at the 1-, 2-,
and 3σ level due to fluctuations in the absorber proper-
ties (column density, Doppler parameter, redshift) along
different lines-of-sight. The numerical simulations con-
sist of Monte Carlo realizations of distributions of the

absorber properties constrained from observations.
We compare our and previous measurements of the

cosmic flux decrement to the outcomes of our simula-
tions and find an excellent agreement between the ob-
servations and the predictions of one of the models con-
sidered in this work. Furthermore, we find that the dis-
tribution of the D A values at a given redshift are well
described by a lognormal distribution function. This
implies that the effective optical depth, usually defined
as the logarithm of the average flux, is necessarily Gaus-
sian distributed, in contrast to previous studies. This
result is independent to the form of the input distribu-
tion functions, and rather insensitive to the presence of
high-column density absorbers, such as the Lyman limit
systems.

keywords methods: numerical, intergalactic
medium, quasars: absorption lines

6.1 INTRODUCTION

Since the introduction of the Gunn-Peterson (GP) test
by Gunn & Peterson (1965), a detailed knowledge about
the physical state of the intergalactic medium (IGM) has
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been gained from the study of the absorption features
identified in the spectra of quasi-stellar objects (QSOs)
at restframe wavelengths λ ≤ 121.5 nm, which are now
known to be mainly due to resonant scattering by inter-
galactic neutral hydrogen, randomly distributed along
the line-of-sight, as first proposed by Lynds (1971). For
instance, the null result in the search for a GP trough
has been used to rule out the existence of a hot inter-
cloud medium (ICM) (Steidel & Sargent 1987a, Gial-
longo et al. 1992, 1994), which was thought to confine
by pressure the Lyα clouds (Sargent, Young, Boksen-
berg, & Tytler 1980, Ostriker & Ikeuchi 1983). As
a result of detailed analyses of the line statistics of
the absorbing material, a wealth of information on its
clustering (see e.g. Ostriker et al. 1988), in particular
the existence of voids (e.g. Pierre et al. 1988, Duncan
et al. 1989, Dobrzycki & Bechtold 1991), and the evo-
lution of its number densities, column densities, and
Doppler parameter with redshift (e.g. Kim et al. 1997)
has accumulated over the past years. These results, in
combination with the use of state-of-the-art numerical
simulations of structure formation based on the cur-
rently accepted paradigm of the concordance cosmol-
ogy (Springel et al. 2005), show that the features seen
in absorption against bright background sources arise
when the line-of-sight intersects the structures that nat-
urally emerge and evolve with time under the influence
of gravitational attraction. Different types of structures
such as the filaments present in the cosmic web, galac-
tic haloes, and even the discs of primeval galaxies, give
rise to distinct absorption features attributed to enti-
ties known historically as Lyα Forest clouds, Lyman
limit systems (LLSs), and damped Lyman absorbers
(DLAs) (see e.g. Rauch 1998, Wolfe et al. 2005, for
excellent reviews, respectively). Nevertheless, the rela-
tion between the observed absorption features and the
objects causing them, in particular the correlation be-
tween observed damped absorption lines, metal lines
(e.g. Mg, O) and galaxies–the so-called Absorber-
galaxy Connection–is still a matter of debate (see e.g.
Williams et al. 2005, Part 1). As a consequence of nu-
merous efforts over many years, we now have a better
understanding of the origins of the different absorption
features observed in QSO spectra. In particular, the no-
tion of discrete, intervening H absorbing systems ran-
domly distributed along the line-of-sight has been em-
bedded into the more general picture of an evolving
continuous intergalactic medium with a H density field
that varies in space and time, with its evolution driven
mainly by the Hubble expansion, the radiation field of

ionising UV sources, and the collapse of structures due
to gravity.

6.1.1 Methods and Input Distributions: A Brief Review

Over decades many people have been working hard to-
wards inferring the physical properties of the intergalac-
tic medium such as its chemical content, density, tem-
perature, etc. by measuring e.g. the type of transi-
tion, strength, number density, and profiles of absorp-
tion lines imprinted in the spectra of QSOs and Gamma-
Ray bursts (GRBs) (e.g. Lamb & Reichart 2000). There
has also been a great effort to quantify the effect of the
absorption due to intergalactic neutral hydrogen on the
photometric properties of background sources. As a
matter of fact, several models have been developed in
order to account for this so-called intergalactic attenu-
ation, with different approaches and purposes. Møller
& Jakobsen (1990) used Monte Carlo simulations to es-
timate the amount of absorption at wavelengths shorter
than the redshifted He λ 30.4 nm line, in order to test
the feasibility of the equivalent of the Gunn-Peterson
test for intergalactic helium. They found that the ab-
sorption as a function of wavelength, averaged over
many lines-of-sight, should display together with a
characteristic stair-case profile due to the cumulative
absorption at the H resonant wavelengths, an addi-
tional characteristic valley-shaped feature (the ”Lyman-
valley”) due to the cumulative effect of the photoion-
isation of H by photons with energies E γ ≥ h c/λ L,
where λ = 91.2 nm. Later on, in a seminal paper Madau
(1995) developed an analytical method to quantify the
opacity due to intergalactic H as a function of redshift,
and its effect on the colors of high-redshift galaxies.
The underlying assumption of this model is that the
observed flux of a source at redshift z is given by the
product of the intrinsic flux and a transmission factor
that accounts for the mean absorption as a function of
wavelength given in the form exp(−τ eff) ≡ 〈exp(−τ)〉
(see equation (3) of Madau 1995), where the brackets
denote the average over an ensemble of random lines-
of-sight. The most common application of this model
consists in correcting the flux of a synthetic spectrum
for intergalactic absorption. This correction is of par-
ticular importance at high redshift, where the absorp-
tion due to intergalactic H severely absorbs the light of
a background object at restframe wavelengths shorter
than 121.6 nm, leading to a substantial reddening of its
colour (see e.g. Bicker et al. 2004). As the numerous
references in the literature attest, the Madau model has
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become the most widely used attenuation model. How-
ever, in a later work Bershady et al. (1999) argued that it
is not possible to estimate the mean change in the mag-
nitude of a source at a given redshift due to absorption
by intergalactic H along the line-of-sight by multiply-
ing the mean transmission curve of Madau’s model with
the spectrum of the source and integrating over the cor-
responding passband, mainly because of the existence
of color terms. They suggested that the correct way of
accounting for the mean effect of H absorption on the
spectrum of a background source and on its photometric
properties, is to model first the absorption along many
random lines-of-sight, compute the desired photomet-
ric quantities for each one of them, and then compute
the average over all lines-of-sight. In other words, they
argue that the processes of averaging over many ran-
dom lines-of-sight and measuring photometric quanti-
ties are non-commutative. Indeed, they showed using
a Monte Carlo technique that the average magnitudes
computed following their approach substantially differ
from those computed using Madau’s model, even when
using the same input distributions for the number of
absorbers, their column densities and Doppler param-
eters. The approach proposed by Bershady, Charlton,
& Geoffroy (1999) effectively mimics the measurement
process that would take place if one would determine
e.g. the mean observed brightness of a collection of
galaxies with different absorber populations along their
particular lines-of-sight, but otherwise identical in their
intrinsic properties (spectrum, morphology, etc.), and
is hence physically meaningful. It turns out that fea-
tures such as the characteristic stair-case profile and the
Lyman-valley cannot possibly be observed in a single
spectrum, since they arise only by averaging over suf-
ficient numbers of lines-of-sight, a process that has no
physical meaning. Surprisingly, however, the Bershady,
Charlton, & Geoffroy (1999) approach is rarely refer-
enced or used in the literature.

In a more recent paper, Meiksin (2006) developed a
method to compute the opacity due to intergalactic H
by using hydrodynamical simulations of structure for-
mation in the framework of the concordance ΛCDM
cosmology performed by Meiksin & White (2004). Ap-
plying his model to compute broad-band magnitudes
for different types of objects (e.g. starburst galaxies,
QSOs of Type I and II), Meiksin (2006) reports differ-
ences of 0.5 – 1.0 mag with respect to Madau (1995)’s
model. Despite of the different results obtained, this
model is similar to Madau (1995)’s model in the sense
that it implicitly assumes that the mean opacity of the

IGM along a random line-of-sight due to the presence
of H can be accounted for by multiplying a given in-
put spectrum with a mean attenuation curve of the form
exp(−τ eff) and integrating over the corresponding filter
function (Meiksin 2006, equation 8).

Following Bershady, Charlton, & Geoffroy (1999),
we state that∫ ∞

0
f λ 〈exp(−τ)〉T (λ) d λ ,

〈∫ ∞

0
f λ exp(−τ) T (λ) d λ

〉
,

(6.1)
where f λ is the intrinsic flux, T (λ) is the filter trans-
mission function, and the brackets indicate the average
over all lines-of-sight. We consider that the operation
denoted by the right-hand side of this expression is the
correct way of estimating mean magnitudes of back-
ground objects including the effect of the absorption
due to intergalactic H. This approach is of course not
restricted to the computation of mean magnitudes and
colors, and can by applied to the estimate of the mean
of any photometric quantity. Furthermore, it is also pos-
sible to determine not only the mean, but in principle
any desired confidence interval around the mean, e.g.
±σ range, via the computation of quantiles (see Section
6.5).

It should be clear that not only the method, but also
the input physics is an (even more) crucial ingredient
of a particular model that accounts for the intergalac-
tic attenuation, as already shown by Bershady, Charl-
ton, & Geoffroy (1999). It is, however, not trivial to
test whether using a particular method and a set of in-
put distributions accurately describes the observed ef-
fect of the absorption by intergalactic H on the spec-
tra of background sources. For example, the evolution-
ary synthesis models of Bicker et al. (2004) that in-
clude the correction for intergalactic absorption based
on Madau’s model match quite well the observations of
galaxies in the Hubble Deep Field (see his Figure 12),
since the magnitude differences reported by (Bershady,
Charlton, & Geoffroy 1999, Figure 7) with respect to
the latter model are in this case of the order of the scat-
ter of the observations around the predicted colors. In
other words, even though these models are fundamen-
tally different, it is difficult to test the accuracy of their
predictions on the basis of a comparison to e.g. ob-
served galaxy colors. A quantity that is more sensitive
to the absorption due to intergalactic H is the mean cos-
mic flux decrement D A (cf. Section 6.2). The reason for
this is that the restframe wavelength range over which
this quantity is measured is typically 10 nm wide, and is
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hence narrower than typical broadband filters. We thus
consider as a primer test that any model that accounts
for the absorption due to intergalactic H should repro-
duce first of all the observations of this quantity. On
this basis, it should be possible to discriminate between
models through the comparison of their respective pre-
dictions to measurements of D A. As we will show, the
input distributions used by Bershady, Charlton, & Ge-
offroy (1999) to estimate changes in the magnitude of
background galaxies do not match the observations of
D A very well, and thus the results of that model re-
garding galaxy colors should be taken with caution. We
will show that Madau’s model and Bershady, Charlton,
& Geoffroy (1999)’s model are complementary to each
other in the sense that the input physics of the first, with
the approach of the second, truly match the measure-
ments of the cosmic flux decrement.

To sum up: The main goal of this work is to
compute and analyse the evolution of D A with redshift
for different evolution scenarios of the intergalactic
neutral hydrogen, conveniently parametrized by input
distribution functions of the form of equation (6.4, cf.
Section 6.2). Thus, the models we present here differ
only by the set of input distribution functions used, but
they all equal in method, i.e. all of them take advantage
of the Monte Carlo technique. We judge the goodness
of a particular model by its power to reproduce the
observations of D A in a wide redshift range. Once we
identify such a model, we exploit it to analyse some
interesting properties of D A. In a forthcoming paper,
we will make use of such a model to asses the impact
of the stochastic absorption due to intergalactic H on
the photometric properties of high-redshift galaxies.

This work is organised as follows: In Section 6.2 we
briefly recall the concept of the cosmic flux decrement
and discuss some issues related to its measurement. In
Section 6.3 we present two different types of models
for the intergalactic attenuation, which we use to com-
pute the redshift evolution of the cosmic flux decre-
ment. In Section 6.4, we describe our measurements
of this quantity for a sample of SDSS QSO spectra. Fi-
nally, we compare these and previous measurements to
the outcomes of each model, and discuss the results of
this comparison as well as some other implications of
the models for the evolution of D A in Section 6.5.

6.2 THE COSMIC FLUX DECREMENT REVISITED

Before high-resolution (i.e. ∆λ . 1 nm), high S/N ob-
servation became feasible, the basic spectroscopic tech-
nique used to analyse the effect of the absorption due to
intergalactic neutral hydrogen on the spectra of back-
ground sources was to measure the mean depression
of the observed flux relative to the unabsorbed flux–
also called continuum–, a quantity which became to be
known as cosmic flux decrement. This quantity, first in-
troduced by Oke & Korycansky (1982), can be defined
as a function of redshift by

D A (z) ≡
1

∆λ

∫ λ 2·(1+z)

λ 1·(1+z)

(
1 −

f obs(λ)
f c(λ)

)
dλ , (6.2)

where f c and f obs are the continuum and the observed
fluxes, respectively, and ∆λ ≡ (1 + z) · (λ 2 − λ 1). For-
mally, the integral is computed in the restframe wave-
length range [102.5, 121.6] nm, i.e. between the Lyα
and the Lyβ emission lines. However, the actual esti-
mate of D A is usually performed between the restframe
wavelengths 105 nm and 117 nm–or in an even nar-
rower wavelength interval–in order to avoid contami-
nation by the emission wings of the Lyβ + O and Lyα
lines, respectively.

The cosmic flux decrement effectively measures the
total equivalent width of all Lyα absorption lines in
the chosen wavelength range, if corrected for the con-
tribution of metal absorption lines. This idea has in-
deed been used by Zuo & Lu (1993) in order to mea-
sure this quantity by adding up the equivalent widths of
lines identified as Lyα absorption lines in a given wave-
length range, thus avoiding the contamination from
metal lines. Of course, the reliability of this measure-
ment highly depends on the correct identification of
lines, a task that is not trivial at all.

Since D A is extremely sensitive to f c, as can be
easily seen from the definition (6.2), an accurate mea-
surement of this quantity demands a reliable estimate
of the underlying continuum. Unfortunately, there is
no consensus of what the best method to estimate the
continuum may be. A popular choice, mainly be-
cause of the presence of emission lines in the Lyα for-
est region, consists in fitting a local continuum, most
commonly using cubic splines (see e.g. Lu, Sargent,
Womble, & Takada-Hidai 1996) or b–spline functions
(see e.g. Kirkman, Tytler, Suzuki, O’Meara, & Lubin
2003, Tytler, Kirkman, O’Meara, Suzuki, Orin, Lu-
bin, Paschos, Jena, Lin, Norman, & Meiksin 2004a,
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Tytler, O’Meara, Suzuki, Kirkman, Lubin, & Orin
2004b), searching for regions apparently free of absorp-
tion blueward of the Lyα emission line. Other authors
prefer to fit a continuum in the region redward of the red
wing of the Lyα emission line, and extrapolate it to the
region blueward of it (Steidel & Sargent 1987b, Schnei-
der, Schmidt, & Gunn 1989, Cristiani, Giallongo, Bu-
son, Gouiffes, & La Franca 1993). A widely adopted
form for the fitted continuum in this case is a power–
law with spectral index α ν with measured values in the
range [0.28, 0.99] (Steidel & Sargent 1987b, Vanden
Berk et al. 2001, and references therein). The latter
method usually tends to place the intrinsic continuum
level higher than it actually is, thus overestimating the
measured values of D A; for the former method the op-
posite is true, in general. For either method, there is
an uncertainty in the estimate of the continuum, and
this is the main drawback of the mean flux depression
as a technique to estimate the mean absorption due to
neutral hydrogen present in the intergalactic medium
(IGM). However, it turns out that reliable measurements
of D A are very useful to constrain estimates of fun-
damental cosmological parameters such as the mean
baryon density Ω b, the UV background intensity (see
e.g. Rauch et al. 1997), the normalization of the power
spectrum σ 8, the vacuum-energy density ΩΛ, and the
Hubble parameter H 0 (Tytler et al. 2004a).

The evolution of the cosmic flux decrement has been
previously modeled by different workers (see e.g. Gial-
longo et al. 1990, Cristiani et al. 1993, Madau 1995),
usually obtaining a good agreement with observations.
However, there is still a scatter in the observations of
this quantity for which it has not been accounted yet in
any modelling so far. Using our Monte Carlo simula-
tions of the absorption due to intergalactic H along a
large number of lines-of-sight, we assess to which ex-
tent the observed scatter can be ascribed to the intrinsic
scatter in D A due to fluctuations in the absorber proper-
ties (number density, column density, Doppler parame-
ter) along different lines-of-sight (see Section 6.5.3).

Under the assumption that the restframe equivalent
width of the absorbers does not evolve with redshift,
and that the number density of the absorbing systems
evolves like ∝ (1 + z) γ, It is expected that D A should
evolve with z like

D A(z) ∝ (1 + z) 1+γ (6.3)

where the factor (1 + z) comes from the scaling of the
equivalent width, as pointed out by Jenkins & Ostriker

(1991). Indeed, it has been found empirically that
the redshift evolution of D A can be described by a
power law D A (z) = A · (1 + z) γ with A = 6.2 · 10−3

and γ = 2.75 (Kirkman et al. 2005), but also by an
exponential D A (z) = D 0

A · e
α (1+z) with D 0

A = 0.01 and
α = 0.75 (Zhang et al. 1997). More recently, Kirkman
et al. (2007) showed that the observed evolution of
D A with redshift in the range 0 < z < 3.2 is well
described by a broken power–law, even though the fit
is still poor. None the less, expression like these are
only valid up to a given redshift, since it diverges for
z→ ∞, whilst D A converges asymptotically to 1 in this
limit, or more precisely, when z approaches the redshift
z reion at which reionisation sets on. Furthermore, even
if the power–law form for the evolution of D A holds,
the index γ in the last equation should be replaced by
γ, where the latter index accounts for the averaged
evolution of absorbers of different column densities.
As we know now, different types of absorbers evolve at
different rates, and an equation of the form of equation
(6.3) would imply that they evolve at the same rate,
independently of their column density. On the other
hand, estimates of a single γ from D A measurements
assuming a power–law of the form of equation (6.3),
as done by O’Brien et al. (1988), may give a hint on
the population of absorbers dominating the behaviour
of D A, comparing the estimated γ with the power–law
index of the different populations. We will show from
our simulations that the predicted redshift evolution of
D A satisfies the asymptotic behaviour described above,
and that, indeed, this behaviour is dominated by the
absorbers with column densities N HI . 10 17 cm−2.

A compilation of D A measurements, accumulated in
the literature over the past twenty years approximately,
and which includes our own measurements that extend
the redshift range to z em = 5.41, is shown in Figure 6.2
(cf. Section 6.4 and cited references for details on the
measurements in this figure).

6.3 MODELLING THE INTERGALACTIC ATTENU-
ATION

Since the observation of individual sources (galaxies,
QSOs, GRBs) necessarily implies observations along
different lines-of-sight, it is expected that the stochas-
tic nature of the distribution of the Lyα absorbers, es-
pecially of those with the highest column densities,
causes a scatter in the observed absorption, even for
sources with identical intrinsic spectra. Hence, depend-
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ing on the absorption along a particular line-of-sight,
one would expect different observed values for each
measurement of any photometric quantity, for exam-
ple, the cosmic flux decrement D A. Performing enough
measurements of such a quantity for nearly ”identical”
sources at a fixed redshift, one could in principle esti-
mate its mean and its scatter due to stochastic effects in
the absorption by neutral hydrogen in the IGM.

The numerical realisation of this thought experiment
is best achieved through Monte Carlo simulations. Fol-
lowing e.g. Møller & Jakobsen (1990), Giallongo, Grat-
ton, & Trevese (1990), Cristiani, Giallongo, Buson,
Gouiffes, & La Franca (1993), Bershady, Charlton, &
Geoffroy (1999), we generate thousands (4 · 10 3) of
lines-of-sight each with a random population of H ab-
sorbers, and compute the absorption along each of them
for a given input spectrum at a fixed redshift. The popu-
lation of each line-of-sight consists of a random number
Nabs of absorbing systems, each of them characterized
by three parameters: its redshift z abs, its column density
N HI, and its Doppler parameter b ≡

√
2kT/mH , where k

is the Boltzmann constant, T is the kinetic temperature
of the gas and mH is the mass of the hydrogen atom.

The redshift and column density characterising each
absorber are drawn from a distribution of the form

f (N HI, z) = N 0 · (1 + z) γ · N HI
−β , (6.4)

whereN 0 is a normalization constant. This function de-
fines the 1-dimensional distribution of the H present in
the IGM probed by a random line-of-sight. The number
N abs of systems for each line-of-sight is drawn from a
Poisson distribution with parameter

〈N abs〉 =

∫
I z

∫
I N HI

f (N HI, z) d N HI d z , (6.5)

where the integral is carried out over appropriate
redshift- and column density intervals I z and I N HI , re-
spectively.
We use different sets of input distributions that include
the evolution of both low- and high density absorbers,
and that give rise to the following models:

MMC This model relies on the input distributions
from Madau (1995, equation 10) listed in Table 6.1.
Here, the Doppler parameter is kept constant at a value
b = 35.0 km s−1, which corresponds approximately to
the mean derived by Rauch et al. (1992).

Table 6.1: Types of absorbers and their corresponding param-
eters adopted from Madau (1995, equation 10). Note, how-
ever, that he quotes as lowest column density N HI = 2.0 ·10 12,
while we use N HI = 1.0 · 10 12, in order for the adopted nor-
malisation to be consistent.

N HI [cm−2] N 0 γ β

10 12 − 1.59 · 10 17 2.40 · 107 2.46 1.50
1.59 · 10 17 − 10 20 1.90 · 108 0.68 1.50

Table 6.2: Types of absorbers and their corresponding pa-
rameters. Parameters are adopted from Bershady et al. (1999,
equation 10).

N HI [cm−2] N0 γ β

10 12 − 10 14 3.14 · 107 1.29 1.46
10 14 − 1.59 · 10 17 1.70 · 106 3.10 1.46
1.59 · 10 17 − 10 20 1.90 · 108 0.68 1.50

BMC This model matches the model named MC-
Kim of Bershady, Charlton, & Geoffroy (1999), but
we briefly describe it here for completeness. The cor-
responding parameters for the line-density evolution
and column density distribution functions are summa-
rized in Table 6.2. In this model, in contrast to the
MMC model, the Doppler parameter for each absorber
is drawn from a truncated, redshift-dependent Gaussian
distribution of the form

P(b) ≡ Θ (b − b tr) ·
1

√
2πσ2

exp
(
−

1
2σ2 (b − µ)2

)
,

where Θ(x) is the Heaviside function:

Θ (x) =

0, x < 0
1, x ≥ 0

and the mean, standard deviation and truncation value
at redshift z are given by µ (z) = −3.85z + 38.9, σ (z) =

−3.85z + 20.9 and b tr(z) = −6.73z + 39.5, respectively.
Bershady, Charlton, & Geoffroy (1999) originally used
this model to analyse the impact of the intergalactic at-
tenuation in the range 1.75 < z < 5.0, but we use it in
the extended range 0.2 < z < 5.41. Since our highest
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redshift limit is not too far away from Bershady, Charl-
ton, & Geoffroy’s, we consider the model to be valid in
our extended redshift range.

MMC without Lyman limit systems In order to
asses the impact of the Lyman limit systems on the
intergalactic absorption, we introduce this model,
which consists of the same input distributions as the
MMC model, excluding the systems with column
densities N HI > 1.59 · 10 17 cm−2.

In all the models describe above, the attenuation fac-
tor for each absorber is given by exp[−τ(λ)], where, for
the general case, the absorption coefficient τ(λ) can be
written as

τ(λ) = τ LL(λ) +

N trans∑
j=2

τ j (λ) . (6.6)

The first term on the right–hand side is the opacity due
to the ionisation of neutral hydrogen by photons with
wavelengths λ ≤ λL ≡ 91.18 nm. It is given by

τ LL(λ) = N HI · g (λ) · σ∞ ·
(
λ

λL

)3

, (6.7)

where σ∞ ≡ 6.31 · 10−18 cm 2 is the H photoionisation
cross-section, and g is the Gaunt-factor for bound-free
transitions. 1 The second term is the sum of the opac-
ities due to resonant scattering at each transition of the
Lyman series 2. In general, the absorption coefficient
for the transition n = i→ 1 is

τ i(λ) = N HI · σ i · φ (a i, x) . (6.8)

The cross-section σ j is a function of the Doppler pa-
rameter b, the oscillator strength of the transition f j,
and the resonant wavelength λ j, and is given by

σ j =

√
π e 2

m ec 2

λ 2
i

∆λD
f j , (6.9)

where ∆λD = λ j b/c is the Doppler broadening, and
the variable x ≡ (λ − λ j)/∆λD is the distance to the line

1 An extensive tabulation of values for the Gaunt-factor can be
found in Karzas & Latter (1961).

2 We adopt the convention that the Lyα transition (from the ground
state to the next higher energy level) be identified with i = 2, the Lyβ
transition with i = 3, etc. The photoionisation cross-section is thus
consistently denoted by σ∞.

center in Doppler units. We assume the profile func-
tion φ of the absorption line to be given by the Voigt-
Hjerting function

H (a j, x) ≡
a j

π

∫ +∞

−∞

e−y 2

(x − y) 2 + a 2
i

d y . (6.10)

Here, a j ≡ λ
2
j Γ j/(4π∆λD) is the relative strength of the

natural broadening to Doppler broadening for the ith
transition, and y ≡ v/b is the kinetic velocity in units
of the Doppler parameter. In this work, we neglect the
opacity due to the photoionisation term and consider
only the first resonant transition, i.e. the Lyα transition,
since this is the only one of interest in the wavelength
range studied here. Furthermore, we use the approxi-
mation to H for values of a and column densities char-
acteristic for intergalactic H of Tepper-Garcı́a (2006).

6.3.1 The transmission factor Φ

The cumulative absorption along a random line-of-sight
of the flux f em of a source at redshift zem is calculated
according to expression

f obs (λ obs) =
f em (λ em)
1 + z em

· Φ (λ obs) , (6.11)

where λ obs and λ em are the observed wavelength and
the emitted wavelength, respectively. These are related
by λ obs = λ em · (1 + z em). The quantity Φ is the trans-
mission factor and is given by

Φ (λ) ≡
N abs∏
i=1

exp[−τ 2 (λ/(1 + zi)]

= exp

− N abs∑
i=1

τ 2 (λ/(1 + zi)

 , (6.12)

where τ is given by equation (6.8), and z i is the redshift
at the epoch of absorption 3.

Introducing the relation f c (λ) = f em [λ/(1 + z)]/(1 +

z), it follows from equations (6.2) and (6.12) that

1 − D A (z) =
1

∆λ

∫ λ 2 (1+z)

λ 1 (1+z)
Φ (λ) dλ . (6.13)

Note that the right–hand side of this expression is just
wavelength-averaged value of Φ at redshift z, and we

3 The reader shall bear in mind that N HI, and σ j and a j–through
the dependence on the Doppler parameter–in equation (6.8) are dif-
ferent in general for each absorber. However, we do not write this
explicitly by e.g. introducing a new subscript in order to avoid confu-
sion.
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will denote it by Φ z. Note, however, that this quantity
still depends on redshift, as indicated by the subscript.
Since D A (z) and Φ z differ only by a constant factor,
they may be considered as equivalent with respect to
their statistics, which will be discussed in Section 6.5.2.

6.4 OUR D A MEASUREMENTS

We want to compare the predictions for the evolution of
D A that result from the models described above to ob-
servations. For this purpose, we use previous measure-
ments of D A reported in the literature, and we perform
ourselves new measurements of this quantity, extending
the redshift range of the measurements to z em = 5.41.
Our own measurements are done on QSO spectra from
the SDSS Data Release 5.

Our selection procedure of sources suitable for this
purpose was as follows: since the wavelength range
available from SDSS (DR5) is λ ∈ [380, 920] nm, and
we measure the continuum depression D A in the rest-
frame wavelength interval λ ∈ [105, 117] nm, the red-
shift of our sample is restricted to z min ≥ 380/105−1 =

2.62. We choose z min = 2.7 as our lowest redshift
in order to avoid the low S/N at the blue end of the
spectrograph. A simple query for high-z quasi-stellar
objects on the SDSS SkyServer Spectroscopic Query
Form with this only restriction returns around 2400
spectra. From this first selection, we rejected those ob-
jects for which the redshift was either not measured, the
measurement had failed, or the measured photometric
and spectroscopic redshifts were inconsistent with each
other. We then binned the quasars in redshift intervals
of ∆z = 0.1 and selected for each redshift bin the spec-
trum with the highest S/N, leaving us with 28 sources,
from which we removed three further objects due to low
data quality. The resulting sample is listed in Table 6.3.

6.4.1 Continuum fit

The continuum of a quasi–stellar source is often as-
sumed to be of the form f ν = f 0

ν ν
−α ν (see e.g. Steidel

& Sargent 1987b, Laor et al. 1997, Zheng et al. 1997),
or equivalently, f λ = f 0

λ λ
−α λ , where both indices are

related by α λ = 2 − α ν, and f 0
λ = f 0

ν · c
1−α ν , and c

is the speed of light. Despite of the fact that the spec-
tral index α λ varies over large wavelength ranges (see
e.g. Neugebauer et al. 1979), Zheng et al. (1997) find
by constructing a composite QSO spectrum from 284
HST FOS spectra, that a single power–law describes
well the continuum for wavelengths between 105 and

220 nm, but that the continuum steepens significantly
for λ ≤ 105 nm. Telfer et al. (2002) report, using a sam-
ple nearly twice as large as the previous group, that the
continuum in the extreme ultra-violet region between
50 nm and 120 nm is well described by a single power-
law. Analogously, constructing a composite QSO spec-
trum from a homogeneous sample of over 2200 SDSS
QSOs, Vanden Berk et al. (2001) find that the contin-
uum in the rest-frame wavelength range λ < 500 nm
can be very well modeled by a single power–law either
in wavelength or frequency. However, as already men-
tioned in Section 6.2, other authors prefer to fit continua
locally using cubic splines (see e.g. Lu et al. 1996) or
b–spline functions (see e.g. Kirkman et al. 2003, Tytler
et al. 2004a,b) searching for regions apparently free of
absorption blueward of the Lyα emission line.

Since the Lyα forest region is severely absorbed
due to intervening H systems, especially for high-z
QSOs, and a local fit to the continuum in this region
is extremely difficult, we choose to estimate the con-
tinuum of our selected sources in the Lyα forest re-
gion by fitting a power–law to the QSO spectrum red-
ward of the Lyα emission line and extrapolating it for
λ ≤ 121.567 nm in the restframe of the source. As long
as the assumption of the underlying power–law holds,
this approach has the advantage that the continuum es-
timate is completely independent of the spectral resolu-
tion and S/N in the Lyα forest region. It is true, how-
ever, that due to the steepening blueward of λ = 105 nm
found by Zheng et al. (1997), fitting the continuum of
each source redward of Lyα with a single power law
and extrapolating it to shorter wavelengths may tend to
underestimate the absorption in the Lyα forest region.
Nevertheless, and due to a fortunate coincidence, the
measurements of D A are usually performed precisely
for λ ≥ 105 nm to avoid the wings of the Lyβ + O
emission lines. Thus, the assumption of an underly-
ing continuum in the form of a single power–law, and
consequently the measurements of D A assuming such
a continuum, are more than validated in the light the
results mentioned above.

The power–law that we fit to each spectrum is of the
form

f c (λ;α λ) = f 0
λ (λ + λ0)−α λ . (6.14)

where the flux amplitude f 0
λ, the wavelength off-set

λ0, and the spectral index α λ are the parameters to be
determined. We fit the continuum in the wavelength
range [130 · (1 + z em), 900] nm, in order to avoid the
red emission wing of the Lyα line and the red end of the
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Table 6.3: QSO sample selected from the SDSS DR5. The first four columns include the object designation a, the emission
redshift as quoted in the SDSS DR5 catalog, the spectral index used for fitting the continuum, and its uncertainty, respectively.
The last two columns give the measurement of D A and its uncertainty, together with additional error estimate (see text for
details.)

Object z em α λ σ (α λ) D A σ err (D A)

SDSS J115538.60+053050.5 2.712 1.213 0.002 0.390+0.010
−0.010 0.010

SDSS J112107.99+513005.4 2.843 1.256 0.003 0.281+0.015
−0.016 0.015

SDSS J010619.24+004823.3 2.882 1.170 0.003 0.294+0.018
−0.018 0.018

SDSS J075618.13+410408.5 2.956 1.320 0.007 0.329+0.038
−0.040 0.039

SDSS J164219.89+445124.0 3.125 1.550 0.001 0.349+0.005
−0.005 0.005

SDSS J004054.65-091526.8 3.185 1.278 0.000 0.459+0.000
−0.000 0.000

SDSS J124306.55+530522.1 3.317 1.255 0.012 0.426+0.057
−0.064 0.060

SDSS J083122.57+404623.4 3.365 1.230 0.003 0.261+0.017
−0.017 0.017

SDSS J085343.32+370402.3 3.475 1.115 0.005 0.527+0.019
−0.020 0.020

SDSS J093523.32+411518.7 3.566 1.407 0.007 0.396+0.036
−0.039 0.038

SDSS J094349.65+095400.9 3.713 1.199 0.014 0.529+0.057
−0.064 0.060

SDSS J023137.64-072854.5 3.750 1.269 0.008 0.462+0.037
−0.039 0.038

SDSS J144717.97+040112.4 3.931 1.303 0.016 0.525+0.062
−0.072 0.067

SDSS J162331.15+481842.1 3.990 1.113 0.006 0.494+0.022
−0.023 0.023

SDSS J014049.18-083942.5 4.112 1.181 0.010 0.488+0.041
−0.044 0.042

SDSS J234150.01+144905.9 4.155 1.094 0.010 0.558+0.035
−0.038 0.036

SDSS J081240.68+320808.6 4.332 1.074 0.028 0.517+0.100
−0.127 0.113

SDSS J103601.03+500831.8 4.449 1.149 0.012 0.612+0.039
−0.043 0.041

SDSS J162626.50+275132.4 4.580 1.187 0.023 0.681+0.057
−0.069 0.062

SDSS J005006.35+005319.2 4.663 1.204 0.018 0.693+0.043
−0.049 0.046

SDSS J083914.14+485125.7 4.885 1.350 0.030 0.737+0.057
−0.073 0.064

SDSS J163950.52+434003.7 4.976 1.321 0.024 0.694+0.056
−0.069 0.062

SDSS J233446.40-090812.3 5.107 1.332 0.000 0.735+0.000
−0.000 0.000

SDSS J101447.18+430030.1 5.275 1.220 0.029 0.758+0.058
−0.076 0.066

SDSS J142123.98+463317.8 5.414 1.321 0.080 0.825+0.087
−0.173 0.121

a The designation of each object meets the IAU nomenclature, as required. For details on the official SDSS
designation of an object, please consult www.sdss.org/dr5/coverage/IAU.html
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Fig. 6.1: Spectrum of the QSO SDSS J112107.99+513005.4
at z em = 2.843. The heavy solid and heavy dashed line
indicate the power-law fit to the continuum and its uncer-
tainty, respectively. The corresponding spectral index is α λ =

1.256 ± 0.003.

spectrograph, respectively. Note, however, that for red-
shifts z em & 5 the available wavelength range is smaller
than 120 nm, and this may introduce a large uncertainty
in the fitted continuum. The fit parameters and their
uncertainties were obtained with help of the IDL task
CURVEFIT. It turns out that the continuum fit is rather
insensitive to the uncertainties in the flux amplitude and
the wavelength off-set, and extremely sensitive to the
uncertainty in the spectral index. Because of this and
for simplicity, in our further analysis we neglect the er-
ror in the first two parameters and consider only the
uncertainty in the spectral index to be of relevance 4.
The spectral index and its uncertainty for each source is
listed in Table 6.3. An example of a QSO spectrum and
its corresponding fit are shown in Figure 6.1.

6.4.2 Measurement of D A

For each QSO spectrum, we compute the total absorp-
tion pixel by pixel in the range λ ∈ [105, 117] nm ac-
cording to the expression

D A(z em;α λ) ≡
1

Npix

Npix∑
i=1

(
1 −

f obs(λ i)
f c(λ i;α λ)

)
, (6.15)

4 The full list of fit parameters for each source and
their uncertainty will be available in machine-readable form at
http://astro.physik.uni-goettingen.de/ tepper/da/fitparam.txt

where N pix is the total number of pixels between λ1 =

105 · (1 + z em) nm, λ2 = 117 · (1 + z em) nm. As a consis-
tency check, we adopt two different methods to estimate
the error in our measurements of D A. The first method
assumes that the ±σ range for each measurement is
given by D A [z em;α λ ± σ(α λ)] − D A [z em;α λ], respec-
tively, for the corresponding values of σ(α λ) listed in
Table 6.3. The second method is based on error propa-
gation, according to which the errorσ( f ) in the estimate
of a quantity f (x i), which depends on n independent
random variables {x i}, each with an uncertainty σ(x i),
is given by

σ 2( f ) =

n∑
i=1

σ 2(x i) ·
(
∂ f
∂x i

) 2

. (6.16)

In the case of our measurements of D A, only the uncer-
tainty in the index α λ is relevant, and hence equation
(6.16) becomes

σ err (D A) ≡ σ (α λ) ·
1

∆λ

∫ λ2

λ1

ln (λ+λ 0)
f obs(λ)

f c(λ;α λ)
d λ ,

(6.17)
where we have used equations (6.14) and (6.15). Our
D A measurements together with the errors computed
according to both methods are listed in Table 6.3. Note
that the errors computed using equation (6.17) approxi-
mately (in some cases exactly) correspond to the arith-
metic mean of the ±σ uncertainty quoted in the mea-
surements of D A, which were computed according to
the first method.

Since we do not aim at a high-precision measurement
of D A (as done for example by Tytler et al. 2004a),
we consider our error estimate satisfactory for our pur-
poses. Because of this same reason, we do not cor-
rect our measurements for contamination of metal lines.
However, this should not introduce a large error, since
their contribution is small. For example, Tytler et al.
(2004a) find that they contribute by 2.3±0.5 per cent to
the total absorption at z = 1.9. The validity of this as-
sumption will be also shown in the next section by the
comparison of D A-measurements to the results of our
simulations, in which the absorption due to metal lines
is not included.

6.5 RESULTS & DISCUSSION

6.5.1 Observations vs. Models

We compute the evolution of D A in the redshift interval
0.35 < zem < 6.0 using three different models to account
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for the intergalactic absorption: the models MMC (with
and without Lyman limit systems) and BMC presented
in the Section 6.3, which include the effect of different
populations of absorbers, i.e. Lyα forest clouds and Ly-
man limit absorbers. For completeness, we include the
values of D A computed using Meiksin (2006)’s model
(see Section 6.1). We refer to this model as MTC. For
the MMC (with and without LLS) and BMC models,
we simulate an ensemble of lines-of-sight at fixed red-
shift, and compute for each of them the flux decrement
D A according to equation (6.13). In this way we get for
each given redshift an ensemble of D A values for each
model, from which we estimate the 50 per cent quan-
tile (median), and the ±34.13,±43.32,±47.72,±49.38,
and ±49.87 per cent quantiles around the median, which
correspond to the ±1,±1.5,±2,±2.5 and ±3σ ranges.
We do not compute the mean and σ ranges in the usual
way, since the distribution of D A is unknown a priori.
However, as will be shown in Section 6.3, the distribu-
tion of D A is close to a lognormal or even a Gaussian
distribution; thus, the identification of mean with me-
dian, of ±σ range with the ±34.13 quantile around the
median, and so on, is justified. Since the MTC model
does not use empirical input distributions of the form
of equation (6.4), it is not possible to apply the Monte
Carlo technique to this model, and hence we do not fur-
ther analyse its implications for the evolution of D A.
We compute for this model a single value for D A for
each redshift by numerically integrating the transmis-
sion function for the corresponding redshift in the rest-
frame wavelength range [105, 117] nm.

We compare our simulations to measurements of D A
accumulated in the literature over the past two decades,
done with different methods and approaches. This com-
pilation is by no means intended to be complete. The
reason for choosing these measurements is mainly that
they were performed in redshift ranges which are more
or less mutually exclusive, and which all together cover
the range 0 < z em < 4. Thus, these previous mea-
surements together with our own cover a wide redshift
range that makes the comparison to models more rigor-
ous. Besides, by using measurements carried on using
different methods, we diminish in some way the bias in-
troduced in the D A measurements due to the particular
method chosen by each group. This makes the compar-
ison of observation to models even more objective. The
literature data and our own measurements that extend
the redshift range of the observations to z em = 5.41,
is shown together with our model calculations in Figure
6.2 (see cited references for details of the measurements

shown).
As can be seen in Figure 6.2, the predictions for the

evolution of D A from all three models, MMC, BMC,
and MTC, are practically indistinguishable from each
other when compared to observations at z em . 3. We do
not include in this figure the predictions for D A based
on the MMC model without LLSs, since the difference
between this and the full MMC model is negligible. At
higher redshifts, the values of D A obtained from the
MMC and MTC models match the observations pretty
well. Yet, it is not possible to discriminate between
these models due to the uncertainty and the strong
scatter in the observations, especially around z em ≈ 3.5
(cf. Section 6.5.3). In contrast to the MMC and the
MTC models, the predictions from the BMC model
dramatically deviate from the measurements of D A at
z em > 3. Since the models differ only in terms of the
input distributions and not in terms of the method, it is
clear that the input distributions of the BMC model are
not quite accurate. Furthermore, and because of the fact
that the effect of attenuation is largest at large redshifts,
we conclude that the magnitude changes for high-z
colors reported by Bershady, Charlton, & Geoffroy
(1999) are possibly erroneous, since the measurements
of D A cannot be recovered when computing its redshift
evolution using their model.

We include in Figure 6.2 the empirical fits of Zhang
et al. (1997) of the form D A (z) = D 0

A eα (1+z) with
D 0

A = 0.01 and α = 0.75 and of Kirkman et al. (2005)
of the form D A (z) = A (1 + z) γ with A = 0.0062
and γ = 2.75. These empirical fits match the obser-
vations quite well at z em . 4.5. However, as stated
before, they should be taken with caution, especially
at high redshifts. While D A asymptotically converges
to unity as the redshift approaches the epoch of reion-
isation, zreion, these empirical fits do not. In contrast,
the predicted evolution of D A from all models describe
above does satisfy the expected and observed asymp-
totic behaviour. However, the rate of convergence to
this limiting value depends on the particular set of input
distributions used: the stronger the number density evo-
lution, the faster the convergence. In other words, dif-
ferent input distribution functions imply different val-
ues for z reion, and this information may be used as a
further constraint on the accuracy of a particular set of
input distributions. Extending the computations of the
evolution of D A with the MMC and MTC models to
redshifts z em > 6.0, it turns out that D A is almost unity
at z em ≈ 7.0. This value is slightly higher than the value
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Fig. 6.2: Evolution of D A computed using the MMC (dashed
line), BMC (dotted line), and MTC (dot–dashed line) mod-
els, compared to observations performed over the past twenty
years by different groups and different methods: (1) Zuo &
Lu (1993). (2) Schneider et al. (1991), (3) Kirkman et al.
(2005), (4) O’Brien et al. (1988). Note that, despite of the
heterogeneity of the approaches to measure D A, its evolution
as computed using the MMC and MTC models very accu-
rately matches the observations, while they disagree strongly
with the BMC model, especially at redshifts z em > 3.0. Be-
low this redshift, the models are practically indistinguishable
from each other. For completeness, we include the empirical
fits to the evolution of D A from: (5) Zhang et al. (1997), and
(6) Kirkman et al. (2005).

of 6.5 quoted by Fan et al. (2002) for the epoch of reion-
isation.

In Figure 6.3, we show the redshift evolution of D A
as computed from the MMC model. We show the 50
per cent quantile, i.e. the median, and the ±34.13, and
±49.87 per cent quantiles, which correspond to the ±1-,
and ±3σ ranges around the median. Again, the dif-
ference between the predictions of the MMC with and
without LLSs is negligible, and thus we show only the
results for the full MMC model. Also shown in this fig-
ure are our measurements of D A together with the mea-
surements of O’Brien et al. (1988) from Figure 6.3, and
the most recent measurements of D A available in the
literature from Kirkman et al. (2007). We include only
these measurements, since they are the only ones that
include their uncertainty, and also because these data
sets fully cover the redshift range 0.2 < z em < 5.41. As
can be seen, within the uncertainty the observations are
well matched by the evolution of D A predicted by the
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Fig. 6.3: Evolution of the mean D A according to the MMC
model (solid line) in the range 0.2z em < 6. Here we show
again our measurements of D A, together with the most recent
measurements from Kirkman et al. (2007) (7). The white and
shaded areas around the solid line indicate the intrinsic scatter
at the ±1 and ±3σ level, respectively, due to variation in the
absorption from one random line-of-sight to another.

MMC model in the redshift range 0.2 < zem < 5.41,
with the exception of some outliers around z em ≈ 3,
where the scatter of the observations is large, as also
seen in Figure 6.2. As is apparent from Figures 6.2 and
6.3, the largest scatter in the observed values of D A at
a given redshift cannot be ascribed to the intrinsic scat-
ter in the absorption due to variations from one line-of-
sight to another, not even at the ±3σ level. It may be
possible that this scatter is not real, but only an artifact
of the method employed to measure D A. However, if
real, this scatter indicates that the models can only re-
produce well the redshift evolution of the mean D A, but
cannot account for its variation among different lines-
of-sight.

None the less, since the MMC reproduces the ob-
servations within their corresponding uncertainty very
well, we consider it as a fiducial model for the in-
tergalactic absorption and explore in detail its conse-
quences regarding the evolution of D A.

The fact that our estimates of D A nicely fit into pre-
vious measurements and are also well described by the
MMC and MTC models, as can be seen in Figures 6.2
and 6.3, supports our assumption that the underlying
QSO continuum in the Lyα forest region can be esti-
mated via the extrapolation of the power–law fitted in
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the region redward of the Lyα emission line. However,
we are aware of the fact that we may have systemat-
ically overestimated the continuum level, and that our
measurements of D A maybe therefore slightly overes-
timated as well. This would explain why our measure-
ments are higher on average than the median value of
D A predicted by the MMC model. It is worth mention-
ing, however, that in contrast to previous models (e.g.
Zuo 1993) we explicitly avoid normalising in any way
the used distributions to match the observed D A at some
given redshift, or manipulating the models whatsoever
to satisfy any other restriction. We simply take the dis-
tributions as reported in the literature, where they were
determined directly from line statistics by the authors,
and references therein. We mention this in order to em-
phasize even more the excellent agreement between the
MMC model and the observations.

6.5.2 Distribution of D A

Judging from the dependence of Φ on τ and N abs (see
equation 6.12), it is expected that the transmission fac-
tor and consequently D A are rather complicated random
variables. As is well known from statistics, a random
variable x that can be expressed as the product of a large
number of small, statistically independent factors is dis-
tributed lognormally, i.e. according to the distribution

f (x; µ, σ) =
1

√
2 πσ 2 x

e−
1
2

(
ln x−µ
σ

) 2

, (6.18)

where µ and σ are the mean and the standard deviation
of ln x. This expression is equivalent to the statement
that a random variable x is distributed lognormally, if
and only if its logarithm is distributed normally.

The expected value µ′ and the standard deviation σ′

of a lognormal distributed quantity can be expressed in
terms of the parameters µ and σ as

µ′ = e µ+ 1
2σ

2
, (6.19)

and
σ′ =

(
eσ

2
− 1

)1/2
µ′ . (6.20)

From the form of equation (6.12) we may suspect that
the transmission factor is a lognormally distributed vari-
able, since it can be expressed as the product of a large
number of statistically independent factors that take on
values in the range [0, 1]. The implications of this state-
ment are profound: if Φ is distributed lognormally, so
does Φ z and consequently D A (z). Furthermore, due to

the property of the lognormal distribution stated above,
the effective optical depth of the Lyα absorption, usu-
ally defined as τ eff ≡ − ln (1 − D A) (see e.g. Kim et al.
2001) should obey a Gaussian distribution. This re-
sult follows independently from the fact that the total
optical depth can be expressed as the sum of the in-
dependent contribution of each system, as indicated in
equation 6.12). Thus, for a sufficiently large number
of absorbers Nabs, and if the optical depth for each ab-
sorber has the same mean value 〈τ〉 and dispersion σ(τ)
at each wavelength, τ eff should obey a Gaussian distri-
bution at each redshift, centered at Nabs 〈τ〉 and disper-
sion

√
Nabs σ(τ). The most astonishing fact is that these

statements are completely independent of the form of
evolution of the intergalactic neutral hydrogen, as long
as the transmission factor can be expressed in the form
of equation (6.12). Thus, it should be a fact of nature
that the distribution of the absorbed flux at any given
wavelength should obey a lognormal distribution.

In order to test whether the values of D A obey a log-
normal distribution, we compute the mean and standard
deviation of ln D A for the ensemble of 4 · 10 3 lines-of-
sight at a given redshift according to the equations

µ (ln D A) ≡
1

N LOS

NLOS∑
i=1

ln D i
A , (6.21)

and

σ 2(ln D A) ≡
1

N LOS − 1

NLOS∑
i=1

(
ln D i

A − 〈ln D A〉
) 2
,

(6.22)
With these parameters, we generate normally dis-
tributed random numbers using the Monte Carlo tech-
nique, and compare them to the ln D A values from our
simulations at each given redshift, in order to deter-
mine whether the latter are normal distributed. Re-
call that ln D A is distributed normally if and only if
D A obeys a lognormal probability distribution. As a
first approach, we choose to compare both data sets
graphically using Quantile–quantile plots (QQ plots
for short), and to this end we compute for each set
of values the 50 per cent quantile (median), and the
±34.13,±43.32,±47.72,±49.38, and ±49.87 per cent
quantiles around the median, as done in previous sec-
tions. With this graphical aid it is possible to tell qual-
itatively if the data sets compared to each other are
drawn from the same parent distribution. As a thumb
rule, one can say that the closer the quantiles lie to the
identity line in a QQ plot, the larger the probability that
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both data sets obey the same distribution. In order to
evaluate this statement quantitatively, we define the fol-
lowing measure

δ 2 ≡

N q∑
i=1

(
Q i − q i

Q i

) 2

, (6.23)

where the Q’s are the quantiles determined from ran-
dom numbers distributed normally, the q’s are the cor-
responding quantiles of the ln D A values at a given red-
shift that result from our simulations, and N q = 11 is the
number of quantiles. By definition, δ explicitly gives
the absolute deviation of one data set with respect to the
other, and hence quantifies the departure of the assumed
distribution. Indeed, the smaller the value of δ, the
larger the probability that both data sets belong to the
same distribution. In Figure 6.4 we show the QQ-plots
at each redshift and together with the corresponding
value of δ. As can be judged by visual inspection, the
departure of the distribution of ln D A from a Gaussian
distribution is negligible at all redshifts. Furthermore,
the quoted values of δ seem also vanishingly small.
However, since the distribution of the random variable δ
itself is unknown, we try to determine the significance
of the results by generating two sets of normally dis-
tributed random numbers with mean and standard de-
viations distributed uniformly, and comparing them to
the values found for our simulated data. We do this for
1.2 · 10 6 pairs of sets, and determine from these what is
the fraction of realisations with a value of δ smaller than
a given value. We expect this procedure to quantify the
probability that the values of δ quoted in Figure 6.4 hap-
pen by chance. According to these estimates, there is a
probability of {1.4·10−2, 3.1·10−3, 1.9·10−4, 2.3·10−5}

that a value δ ≤ {0.50, 0.25, 0.10, 0.05} will be pro-
duced by chance, respectively. In Figure 6.6 we show
the values for δ as a function of redshift with the MMC
model. Note that for the whole redshift range shown,
δ . 0.5, and in particular δ . 0.1 for z em > 1.5. Based
on these results, we may conclude that the distribution
of ln D A at a given redshift is Gaussian with a confi-
dence level of 99 per cent, which implies that D A obeys
a lognormal distribution with the same confidence.

It follows from the Central Limit Theorem that the
larger the number of absorbers N abs, the closer the ap-
proach of the distribution of Φ to a lognormal distribu-
tion. Since N abs increases with redshift, it should be
expected that the accuracy with which the distribution
of Φ approaches a lognormal distribution also increases
with redshift. Furthermore, if the integral in equation

(6.13) is approximated by a sum of the form

Φ z ≈
1
N

N∑
i=1

Φ i ∆λ i ,

where N is the number of pixels, it becomes evident
that for sufficiently large N, and assuming that Φ has
the same mean value 〈Φ〉 and dispersion σ(Φ) at each
pixel, the distribution of Φ z should approach a Gaus-
sian distribution with mean 〈Φ〉 and dispersion σ(Φ)/N.
Since the width of a given restframe wavelength range,
i.e. the number of pixels also increases with redshift as
(1 + z), it is expected that the approximation of the dis-
tribution of Φ z and hence of D A to a Gaussian becomes
better with increasing redshift. We thus have the super-
position of two effects: On the one hand, the distribu-
tion of Φ at a fixed wavelength approaches a lognormal
distribution at all redshifts, with the accuracy increas-
ing with redshift. On the other hand, the distribution of
Φ z and D A (z) approaches a Gaussian distribution with
increasing redshift. The net result should be that Φ z

and D A are distributed lognormally at low redshifts,
and that their distribution approaches a Gaussian for
higher redshifts. Since D A asymptotically converges to
unity for very high redshifts, the Gaussian distribution
at these redshifts is expected to be highly peaked around
its mean value. This is naturally given by the fact that
the dispersion of Φ z scales like σ(Φ)/N around 〈Φ〉, as
stated above.

We compute the theoretical lognormal probability
distribution as given by equation (6.18) with the mean
and standard deviation of ln D A computed using equa-
tions (6.21) and (6.22). We do the same for a Gaussian
distribution, using the same equations as before, but re-
placing ln D A by D A, and compare both these theoret-
ical distributions to the distribution of the D A values at
a given redshift that result from our simulations. This
comparison is shown in Figure 6.5. Note the excel-
lent agreement at all redshifts between the lognormal
probability distribution and the distribution of the D A
values resulting from our simulations. We want to em-
phasize that the theoretical curves shown are not fits to
the binned data, but are computed using only the mean
and standard deviation of the unbinned data. The data
were binned only for display purposes. At lower red-
shift, the agreement at the lower cut-off, i.e. at D A = 0
is worth mentioning. It is remarkable that this cut-off,
which is physically given by the fact that D A cannot
take on values smaller than zero, arises in a natural
way due solely to the fact that D A is distributed log-



6.5 Results & Discussion 69

-8 -6 -4 -2

-8

-6

-4

-2

z
em

 = 0.35

δ = 0.255

-6 -4 -2

-6

-4

-2

z
em

 = 0.50

δ =0.190

-5 -4 -3 -2
-5

-4

-3

-2

z
em

 = 1.00

δ = 0.077

-3.5 -3 -2.5 -2

-3.5

-3

-2.5

-2

z
em

 = 1.50

δ = 0.061

-3 -2.5 -2 -1.5
-3

-2.5

-2

-1.5

z
em

 = 2.00

δ = 0.038

-2.25 -2 -1.75 -1.5 -1.25
-2.25

-2

-1.75

-1.5

-1.25

z
em

 = 2.50

δ = 0.042

-1.6 -1.4 -1.2 -1

-1.6

-1.4

-1.2

-1

z
em

 = 3.00

δ = 0.041

-1.4 -1.2 -1

-1.4

-1.2

-1
 z

em
 = 3.25

δ = 0.048

-1.2 -1 -0.8

-1.2

-1

-0.8 z
em

 = 3.50

δ = 0.063

-1 -0.8

-1

-0.8

z
em

 = 3.75

δ = 0.046

-0.9 -0.8 -0.7 -0.6

-0.9

-0.8

-0.7

-0.6
 z

em
 = 4.00

δ = 0.046

-0.7 -0.6 -0.5

-0.7

-0.6

-0.5 z
em

 = 4.25

δ = 0.049

-0.6 -0.5 -0.4

-0.6

-0.5

-0.4 z
em

 = 4.50

δ = 0.062

-0.45 -0.4 -0.35 -0.3 -0.25
-0.45

-0.4

-0.35

-0.3

-0.25

z
em

 = 5.00

δ = 0.046

-0.25 -0.2 -0.15

-0.25

-0.2

-0.15

z
em

 = 5.50

δ = 0.049

-0.175 -0.15 -0.125 -0.1

-0.175

-0.15

-0.125

-0.1 z
em

 = 6.00

δ = 0.085

Fig. 6.4: Quantile-quantile Plot for the values of ln D A computed from the MMC model. Shown are the quantiles correspond-
ing to the ±1,±1.5,±2,±2.5 and ±3σ ranges for the logarithm of our simulated values of D A and for a realisation of normal
deviated random numbers with the same parameters, i.e. mean and standard deviation, as the simulated data. An open circle
denotes the median, and its nearest neighbouring points the ±1σ range, the next nearest the ±1.5σ range, and so on. The solid
line represents the ideal case where both data sets are drawn from the same parent distribution. The deviation from this ideal
situation is quantified by the parameter δ, which takes on values between 0 (both data sets belong to the same distribution with
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Fig. 6.5: Distribution of the D A values at a given redshift computed from simulations based on the MMC model (histogram).
The distribution is normalised to unit area. Shown are also a theoretical lognormal distribution (solid curve) computed accord-
ing to equations (6.18), (6.21), and (6.22), and a Gaussian distribution (dashed curve) computed using the same equations as
before but replacing ln D A by D A. The y-axis indicates the probability of the corresponding D A value on the x-axis. The bin
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normally. Note, in contrast, that a Gaussian distribu-
tion does not satisfactorily describes the distribution of
the data at these low redshifts. Nevertheless, the de-
scription of the data by Gaussian distribution becomes
better with increasing redshift, as previously stated, and
the corresponding Gaussian distribution becomes nar-
rower at every increasing redshift. Note also that the
theoretical lognormal and Gaussian distribution become
visually indistinguishable from each other at high red-
shifts. In order to assess quantitatively the differences
between these distributions with respect to the distri-
bution of the data, we compute again the value of δ at
each redshift, assuming now that the values of D A val-
ues obtained from the MMC model are drawn from a
Gaussian parent distribution. We compare these val-
ues to the corresponding values computed before for an
assumed lognormal parent distribution. This compari-
son is shown in Figure 6.6. As can be seen, the values
of δ for both distributions are low at all redshifts, and
the difference between them at z em & 2 is negligible
small. This explains why the lognormal and Gaussian
distribution functions shown in Figure 6.5 are practi-
cally indistinguishable from each other. However, note
that the values of δ for a assumed Gaussian parent dis-
tribution become vanishingly small with increasing red-
shift, and thus the probability that the data are drawn
from this distribution increases with redshift, eventually
becoming larger than the corresponding probability for
the lognormal distribution. Besides, it can be see also
that the δ values for a assumed lognormal distribution
rise again towards high redshifts, implying that the dis-
tribution of the data at these redshifts is no longer well
described by a lognormal distribution.This confirms our
statement made above, that D A is expected to be dis-
tributed lognormally at low redshifts and normally at
higher redshifts. The redshift at which the transition
from a lognormal to a Gaussian distribution takes place
may depend on the particular set of input distributions
used. For redshifts where the distribution of D A is well
approximated by a lognormal distribution, It is straight-
forward to see that the optical depth must be distributed
normally. This result is not at odds with the results from
e.g. Madau (1995, Figure 1), Meiksin & White (2004,
Figure B1), or Bernardi et al. (2003, Appendix C).

The Effect of the Lyman limit systems (LLSs)

It is usually assumed that the presence of the high-
density Lyman limit systems tends to skew the distribu-
tions of the opacity and hence of the absorption towards

larger values, making values smaller than the mean
more probable (see e.g. Madau 1995, Meiksin & White
2004). In order to quantify the effect that the LLSs have
on the distribution of D A, we compare, following the
analysis of Section 6.5.2, the results of the simulations
for the MMC model with and without the optically thick
LLSs. We find that D A is lognormally distributed as
well with a high confidence for the case where the LLSs
are excluded, as can in Figure 6.6, where the values for
δ computed at each given redshift are shown. Note that
the values of δ for the MMC model without LLSs are
larger at redshifts z em . 3 than those for the full MMC
model. This is due to the fact that the absence of the
optically thick LLSs enhances the probability of the at-
tenuation factor exp(−τ) to be closer to unity at a given
wavelength along a random line-of-sight. This means
effectively that the number of factors in equation (6.12)
are reduced. Hence, when the LLSs are absent, the ap-
proach to a lognormal distribution should be worse with
respect to the case where the LLSs are included. Fur-
thermore, this effect should be enhanced towards lower
redshifts, for which the number of factors, i.e. of ab-
sorbers decreases as ∝ (1 + z em) γ. Note that the trend is
the opposite in the case of a assumed Gaussian parent
distribution.

We have found when computing the evolution of D A
with the MMC model with and without LLSs that the
predictions for the evolution of D A with redshift for the
full MMC model are practically indistinguishable from
the results of the MMC model without LLSs, meaning
that the effect of these systems on the total absorption is
negligible. Furthermore, it turns out that the distribution
of D A values is skewed, i.e. it is lognormal irrespective
of the presence of LLSs. All these results point to the
fact that the LLS have a negligible impact on the evo-
lution of the intergalactic absorption, as long as the in-
put distributions used here correctly describe the num-
ber density evolution of the absorbers. This confirms
the results from Desjacques et al. (2007), and the pic-
ture shall not be fundamentally different, if higher col-
umn density systems such as damped Lyα systems were
present, as pointed out by McDonald et al. (2005).

These results certainly demand an explanation. We
think that, as long as the distribution functions realis-
tically describe the evolution of the Lyα absorbers, the
LLSs cannot have a great impact neither on the absorp-
tion, nor on its statistics because of the following rea-
sons: 1) They are scarce, and even more compared to
the thinner Lyα forest systems (e.g. 5 LLSs on aver-
age along a random line-of-sight compared to approx-
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imately 1500 Lyα forest absorbers out to z = 3.0, ac-
cording to the MMC model); 2) Their contribution to
the absorption is due solely to their Lyα absorption line
(not the Lyman break), and the equivalent width of the
systems with column densities N HI = 10 17.21−18 cm−2,
as can be seen from a curve-of-growth (Figure 6.7),
is not too different from that of the systems with col-
umn densities N HI = 10 14−15 cm−2, which are by far
more numerous. For example, the input distributions
of the MMC model predict that the ratio of the aver-
age number of the optically thin Lyα forest absorbers
to the number of optically thick Lyman limit systems
at a redshift z em = 4.0 amounts to 477. If we sup-
pose that all Lyα forest and Lyman limit systems are
absorbers with the largest possible column density for
their respective column density ranges, i.e. N HI ≈ 10 17

and N HI ≈ 10 20 cm−2, then the ratio of the Lyα equiv-
alent width of the thin systems to that of the thick sys-
tems for a mean Doppler parameter of 36 km s−1 is ap-

proximately 0.12. For the case that we take the lowest
column density and more numerous systems to be rep-
resentative of their respective populations, the ratio of
their equivalent widths is approximately 0.006. Even
in this case, the total equivalent width of the optically
thin Lyα forest systems dominates over that of the op-
tically thick LLSs by a factor of 477 · 0.006 = 2.89, at
z em = 4.0. In order to see the relative contribution of
each population at a given redshift more precisely, we
weight the equivalent width W(N, b) with the column
density distribution, and compute the ratio

% (z em; b) ≡
〈W〉Lyα

〈W〉LLS
, (6.24)

where

〈W〉 i ≡

∫ z em

0

∫ N max

N min

(1 + z) ·W 0 (N, b) f i (N, z) d N d z ,

(6.25)
Here, f i is the distribution function of population
i ∈ {Lyα, LLS}, W 0 (N, b) is the rest equivalent width
of a Lyα absorption line for a column density N and
Doppler parameter b, and N min and N max are the col-
umn density limits that define each population, respec-
tively. For a reasonable value for the Doppler parameter
of 36 km s−1, and the input distributions of the MMC
model, we find that % >> 1 at all redshifts. The re-
sult is qualitatively the same for the BMC model. It
can be conclude from this that the Lyα forest systems
dominate the absorption over the optically thicker Ly-
man limit systems at all epochs. This explains in the
first place why the difference between the predictions
for D A from the MMC model with and without LLSs,
is vanishingly small. Also, it is consistent with the fact
that the distribution of D A should not be far from log-
normal or Gaussian, with or without LLSs, since this
only depends on the fact that the absorption factor be
expressed in the form of equation (6.12), and this is
truly independent of the form of the input distributions,
as stated previously. Finally, It also explains why the
behaviour of σ (D A), as shown in the next section (cf.
Figure 6.8), is qualitatively the same irrespective of the
presence of these systems.

We thus conclude that the distribution of D A, i.e. the
flux field for a given redshift as predicted by the MMC
model, is lognormally distributed with a high confi-
dence at redshifts z em . 6, and consequently, that ln D A
and hence the optical depth of H obey a Gaussian dis-
tribution, in disagreement with the results of previous
analyses (e.g. Madau 1995, Bernardi et al. 2003, Tytler
et al. 2004a, Meiksin & White 2004).
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6.5.3 Scatter in D A

We expect the intrinsic scatter in the absorption due
to cosmic variance to be strongest at lines-of-sight of
middle length. At low redshifts, both the number of
thin Lyα forest clouds and thick Lyman limit systems is
small, and the addition of a few more does not change
dramatically the amount of absorption. However, the
number of Lyα forest clouds increases rapidly with z,
and thus the probability of encountering more or less
systems than average increases as well. Correspond-
ingly, the absorption increases and so does its scatter.
At even higher redshifts, the number of Lyα forest sys-
tems increases so dramatically and the absorption is so
severe that the addition of more systems does not make
any difference neither to the absorption nor to the scat-
ter. Thus, we should expect the stochastic effect, i.e.
the scatter in absorption, to peak at some intermediate
redshift z int.

We compute the intrinsic scatter at the σ level for
the values of D A at each given redshift obtained from
our simulations using equations (6.19), (6.20), (6.21),
and (6.22). The result is shown in Figure 6.8, where we
show the evolution of the scatter in D A with redshift for
the MMC model with and without LLSs. We also in-
clude for completeness the result from the BCG model.
It can be seen that, irrespective of the model, the scat-
ter peaks at a intermediate redshift between z em ≈ 3.5

and z em ≈ 4.0. Note that the peak is significant, since
it represents an increase in the scatter of 2.5 times with
respect to its value at z em ≈ 1. It is interesting that
this result had also been found by Zuo (1993, Figure 2),
who using a semi-analytic approach and different input
distributions, reported that σ(D A) is largest at redshifts
near 3.7. Thus, the qualitative behaviour of the intrinsic
scatter of D A shown in Figure 6.8 may be an unavoid-
able feature of this observable, which could explain at
least in part the large scatter in the measurements of D A
seen in the same redshift interval (cf. Figure 6.2). As
stated above, however, the large scatter in the observa-
tions at these redshifts cannot be accounted for by the
models, not even at the 3σ level.

When comparing models that only differ by the pres-
ence of the optically thick Lyman limit systems, we find
that the scatter in D A is larger at any given redshift
when the LLS are present. None the less, the abso-
lute value of the scatter does not differ significantly be-
tween the situation where these systems are present and
where they are absent. Thus, the contingent presence
of a few less or more thicker systems does introduce a
variation in the absorption from one line-of-sight to an-
other, even though the absorption itself does not vary
in a significant amount. In other words, the net effect
of the LLSs is to enlarge the intrinsic scatter in the ab-
sorption. However, note that for redshifts z em & 4.0,
the amount of scatter at the 1σ level becomes indistin-
guishable between both models, owing to the fact that
the thinner Lyα forest systems are overwhelmingly nu-
merous at these redshifts.

The results above support our previous conclusion
that the optically thick LLSs cannot have a great impact
on the absorption and on its scatter. The fact that LLSs
(and maybe DLAs) do not have a great impact on the
scatter in absorption is even more apparent when assess-
ing their effect on broad-band colors. This is mainly be-
cause their Lyman break is always blueward of the Ly-
man break of the source, and their Lyα lines do not con-
tribute significantly to the absorption, especially when
integrating the flux over a large wavelength range char-
acteristic of broad-band filters. We leave this analysis
to a forthcoming paper.

We want to highlight two curiosities: First, by taking
a close look at Figures 6.3 and 6.8 it becomes apparent
that the maximum in the evolution of σ (D A) roughly
coincides with the point of inflection of the curve that
describes the redshift evolution of D A. Mathematically,
this implies that the intrinsic scatter of D A is propor-
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tional to the rate of change of D A with redshift, i.e.

σ(D A) ∝
∂D A

∂z
. (6.26)

Indeed, if one computes numerically the derivative of
D A with respect to z, it turns out that it qualitatively
matches the evolution of σ (D A), up to a scale transfor-
mation. A possible interpretation may be that a stronger
evolution of D A, i.e. a stronger change with z (where
the rate of change is given by the derivative) implies
a rapid change in the evolution of the absorbers. This
implies a larger variation in the absorption from line-of-
sight to line-of-sight, and thus a larger value of σ(D A).

Second, it is interesting to note that the redshift at
which the intrinsic scatter in evolution of D A peaks
roughly coincides with the redshift at which the obser-
vations show a strong scatter. i.e. around z em ≈ 3.5.
This roughly matches the redshift at which Bernardi
et al. (2003) reported a particular feature in the evo-
lution of the Lyα optical depth, which has been inter-
preted by the authors as a signature of the reionisation
of He . If these is a mere coincidence or if it has a
more profound meaning requires further detailed analy-
sis, which is however beyond of the scope of the present

work.

6.6 SUMMARY & CONCLUSIONS

1. We measured the cosmic flux decrement D A and
its uncertainty for 25 QSOs of the SDSS DR5 cat-
alog in the redshift range 2.71 ≤ z em ≤ 5.41.

2. We modeled the redshift evolution of D A in a
Monte Carlo fashion, using two different sets of
input distributions for the absorber properties, and
found that the prediction of the MMC model re-
produce well the observations in the range 0.2 <
z em < 5.41, in contrast to the BMC model. We
conclude from this that the underlying input dis-
tributions of the BMC model do not quite de-
scribe the evolution of the Lyα absorption on the
IGM, and that previous estimates of the impact
of the intergalactic attenuation on the photomet-
ric properties of high-redshift galaxies using this
model are inaccurate. Incidentally, by comparing
the simulations to the data, we show the power of
the relatively simple approach used here to model
the effect of intergalactic absorption, as compared
to models based on hydrodynamical simulations
which are by far more complex and yield similar
results.

3. We found from our simulations that the distribu-
tion of the D A values at a given redshift is well
described by a lognormal distribution at low red-
shifts and even better by a Gaussian distribution
at high redshifts, in agreement with the fact that
the absorption consists of the product of statisti-
cally independent factors. This result implies that
at redshifts where D A is distributed lognormally,
the effective optical depth of the intergalactic H
obeys a normal distribution, contrary to the results
of previous studies. However, a larger number of
accurate measurements are needed to determine
whether D A is truly distributed (log–)normally.
We leave as an open question whether the result
that D A is distributed lognormally is linked in
some way to the assumption that the primordial
density fluctuations that gave origin to the struc-
ture formation in the Universe, and that ultimately
gave rise to the Lyα absorbers, obey a lognor-
mal distribution as well, as proposed by Bi et al.
(1992).
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4. We conclude that the optically thick Lyman limit
systems have a negligible effect on the absorption,
even though they do increase its intrinsic scatter.
As expected on a theoretical basis, the presence
of these systems does not significantly affect the
distribution of D A. These results are subject to the
assumption that the evolution of these systems is
given by the input distributions used.
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CHAPTER 7

Stochastic Absorption of the Light of Background
Sources due to Intergalactic Neutral Hydrogen

II. The impact on the photometric redshifts of galaxies

7.1 INTRODUCTION

The mean photometric properties of field galaxies in
deep surveys are nowadays well described by evolution-
ary synthesis models such as  (Bruzual A. & Char-
lot 1993), , (Fioc & Rocca-Volmerange 1997),
and  (Bicker et al. 2004). Nevertheless, a scat-
ter in the observed luminosities and colors of galax-
ies is present which cannot be accounted for by any of
these models. The origin of this observed scatter may
be two-fold: On the one hand, there are instrinsic prop-
erties of the galaxies like the dust content or strong on-
going starbursts which cause them to have colors and
luminosities intrinsically different from those of their
respective ”average” counterparts or templates (E, S0,
Sa, . . . , Sd). The correction for the variations in col-
ors and luminosities due to absorption by dust has not
yet consistenly been included into evolutionary synthe-
sis models, although an important step towards this goal
has been achieved by Möller et al. (1999). Furthermore,
Fritze-v. Alvensleben & Bicker (2006) found that some
of the extremely red galaxies observed in the HDF-N
with (m450 − m606) ≥ 1.5 (Sawicki et al. 1997) can
be explained as dust-free(-strong-)post-starburst phases
of normal galaxies which experienced a major event of
Star Formation (SF) in the past.

On the other hand, the light of a galaxy is partially
absorbed by the intervening neutral hydrogen (H) in
the intergalactic medium (IGM) in form of discrete Lyα
absorbers. Since the absorption primarily affects the
rest-frame UV, the mean net effect of the intergalactic
attenuation is to redden and dimm the spectrum. How-
ever, since the distribution of the Lyα absorbers along
the line of sight is stochastic in nature, there is a chance
that the line-of-sight to galaxies which are either bluer
or redder than the average population that is well de-
scribed by models accounting for an average amount of
attenuation.

Due to the random distribution of neutral hydrogen
in the IGM, the population of Lyα absorbers charac-
terized by their redshift zabs, column density N HI and
Doppler parameter b is unique for each line of sight.
Hence, in order to correctly account for the absorption
of light caused by this intervening absorbing H sys-
tems, a detailed knowledge of their properties (number
density, temperature, etc.) and evolution is required. It
has been found from statistical analyses of quasar ab-
sorption lines (see e.g. Hu et al. 1995, Kim et al. 1997,
2002a, and references therein) that, when averaged
over a large number of lines-of-sight, the number den-
sity evolution of Lyα absorbers is well described by a
redshift- and column density-dependent power law of
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the form d N ∝ N HI
−β (1 + z) γ (Peterson 1978, Car-

swell et al. 1984, Atwood et al. 1985, Murdoch et al.
1986, Carswell & Rees 1987).

The impact of attenuation of light by intervening H
systems on the spectra of bright background sources has
until now been studied by Møller & Jakobsen (1990),
Madau (1995), Bershady et al. (1999), and more re-
cently by Meiksin (2006). Using different sets of pa-
rameters for this power law derived from observations,
these studies have, with different purposes and ap-
proaches, made efforts to account for the mean attenua-
tion due to intervening Lyα absorbing systems of light
emitted from distant sources like QSOs and galaxies
(Møller & Jakobsen 1990, Madau 1995) and for its im-
pact on the distribution of galaxy colors (Madau 1995,
Bershady et al. 1999, Meiksin 2006). It is our aim to
complement these previous studies and to explore to
which extent the observed scatter in photometric prop-
erties of field galaxies can be due to the stochastic na-
ture of the attenuation. In this first approach, we focus
on this effect only, neglecting the effects of dust and
ongoing starbursts, as well as the absorption within the
galaxy.

Here we present a further, improved effort to quanti-
tatively account for the stochastic effect of the Lyα ab-
sorbers on the photometric properties of galaxies. Fol-
lowing Møller & Jakobsen (1990) and Bershady et al.
(1999), we apply Monte Carlo techniques to simulate
the effects of hundreds to thousands of absorbers along
a random line of sight and model the mean attenuation
of light and any desired σ level around this mean as
a function of redshift. The advantage of our approach
is that it includes the corrections concerning the calcu-
lation of the σ scatter pointed out by Bershady et al.
(1999). We apply this model to address the question of
how photometric redshift estimates are affected by the
stochastic attenuation.

7.2 MODEL DESCRIPTION & INPUT PHYSICS

In Tepper-Garcı́a & Fritze (2007, from now on Pa-
per II) we presented a model of the absorption of the
light from background sources due to the presence
of randomly distributed intergalactic neutral hydrogen
along the line-of-sight. We compute of an ensemble
of lines-of-sight, each of which is characterised by a
unique, random population of Lyα absorbers. By a pop-
ulation we mean a given number N abs of absorbers and
a set {z abs, N HI, b}i=1,...,N abs , where the absorption red-

shift z abs, the column density N HI and the Doppler pa-
rameter b uniquely determine the absorption properties
of each sytems. The population of each line-of-sight
is computed in a Monte Carlo fashion, drawing the to-
tal number of absorbers and their corresponding param-
eters from distribution functions constrained from ob-
servations. Despite considerable efforts on the obser-
vational side, these distribution functions are not yet
uniquely settled. We therefore chose to use two dif-
ferent sets of distribution functions and calculate for
both of them the redshift evolution of the cosmic flux
decrement. Contrasting the results from these compu-
tations with observations serves as a consistency check.
We find that one of sets of distribution functions, when
combined with the approach described, correctly repro-
duces the evolution of the cosmic flux decrement as de-
rived from observations. We thus identify a particular
model, called MMC (from Madau and Monte Carlo),
which has successfully has passed the test against ob-
servations. We now use this model to analyse the impact
of the stochastic attenuation on the photometric prop-
erties of galaxies, in particular, on their magnitudes.
This allows us to estimate in how far photometric red-
shifts based on the measured spectral energy distribu-
tions (SEDs) are affected by this stochasticity.

7.2.1 Absorption masks

Since the absorption due to intergalactic H along ran-
dom lines-of-sight is different for each line-of-sight,
and observations of different galaxies necessarily im-
ply observations along different lines-of-sight, a non-
instrinsic scatter in the observed photometric quantities
can be expected, even for galaxies with identical intrin-
sic properties. This effect, as mentioned before, adds
to the scatter in the observed colors and luminosities
caused by variations in the intrinsic properties of the
galaxies such as star-formation fluctuations, dust con-
tent, morphology, geometry, etc.

The effect of a population of absorbers along the line-
of-sight is fully determined by the set of parameters
{z abs, N HI, b} i=1,...,,N abs . Assuming this to be given, the
observed flux of a galaxy with intrinsic flux f em at red-
shift z gal is given by

f obs (λ) =
f em [λ/(1 + z gal)]

1 + z gal
Φ (λ) , (7.1)

where the quantity Φ is the transmission factor and is
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given by 1

Φ (λ) ≡
N abs∏
i=1

exp[−τ (λ/(1 + z abs)] . (7.2)

where τ is the absorption coefficient which includes the
photoionisation cross–section and the absorption due to
resonant scattering (Paper II).

It is important to note at this point that the emitted
flux in equation (7.1) as given by our model galaxy
spectra (see below), accounts for the evolutionary ef-
fect, i.e. the fact that galaxies at high redshifts are seen
in younger evolutionary stages, and their intrinsic spec-
tra are not equivalent to template spectra which have
only been redshifted. This effect has to be taken into
account when computing magnitudes in a given pass-
band by including, in addition to the the k-correction, an
additional term, the so-called e-correction, due to this
effect.

In a first approach, we consider galaxies of the same
spectral type to be galaxies with identical intrinsical
properties. The method used is briefly outlined: We
assume an ensemble of N galaxies of the same intrin-
sic type to be distributed randomly across the sky, all
at the same redshift z gal. Note that each of these galax-
ies corresponds to the same model spectrum. Using the
MMC model (cf. Paper II), we generate an ensemble
of an equal number N LOS of lines-of-sight, or equiva-
lently, absorption masks. An absorption mask is just
the attenuation factor Φ in equation (7.2), and consists
of a flux distribution as a function of wavelength, which
encodes the cumulative absorption due to the popula-
tion of of absorbers along that particular line-of-sight
(cf. Fig. 7.2). Applying each of this absorption masks2

on the input spectrum, we obtain an ensemble of N LOS

attenuated spectra, from which we may calculate any
photometric quantity. From the ensemble of values, it
is then possible to compute its statistical moments, i.e.
mean, standard deviation, etc., which may be compared
to the corresponding observed values. However, since
the statistics of these rather complex random variables
is not known a priori, we do not compute mean values
and standard deviations in the usual way, i.e. implic-
itly assuming Gaussian statistics, but rather determine

1 It should be clear that z abs and τ – through the dependence on
N HI, σ i, and b – in equation (7.2) are different in general for each
absorber. However, we do not write this explicitly by e.g. introducing
a new subscript in order to avoid confusion.

2 The code to generate an absorption mask for any desired redshift
will be make publicly available together with the paper.

quantiles from the ensemble of simulated values (see
section 7.2.2).

The MMC model as presented in Paper II has been
extended here in order to include the absorption due
to photoionisation of H by photons with energies λ ≤
91.175 nm, as well as due to the first ten Lyman tran-
sitions. The cosmic flux decrement D A is per defini-
tionem affected only by the Lyα transition. In con-
trast, the full spectrum of resonant transitions an the
photoionisation may have a great impact on the lumi-
nosities and colors of an observed galaxy, depending
on its redshift and the wavelength range in which it is
observed. The Madau model (Madau 1995) includes
the first 17 Lyman transitions, together with the ab-
sorption at the Lyman edge. Bershady et al. (1999)
noted that including eight more transitions, i.e. a to-
tal of 25, results approximately in a 0.5 per cent change
in the computed colors. In his model, Meiksin (2006)
includes a total of 31 transitions. However, it can be
estimated that the further six transitions have a negligi-
ble effect on the computed luminosities. On the one
hand, the strength at line centre of the ith transition
relative to Lyα for a fixed N HI and b is proportional
to λ i · f osc, i · [exp (a 2) er f c (a)], assuming that the line
profile is given by the Voigt-Hjerting function H (a, x).
The term in brackets correspond to H (a, 0) (see e.g. Za-
ghloul 2007) and er f c (x) ≡ 1 − er f (x) is the comple-
mentary error function. This term is rather insensitive
to a, and hence the strength of the line of order i relative
to the strength of the Lyα line at the line centre very ac-
curately scales as λ i · f osc, i. Using this, we compute the
strenght of all Lyman transitions relative to Lyα. The
result is shown Fig. 7.1. As can be seen, the absorp-
tion due to each of the first ten transitions is of the order
10−2 weaker than that of the Lyα. For higher-order tran-
sitions, the strength is of the order 10−3 or smaller than
that of Lyα.

Moreover, due to their decreasing central wave-
length, the contribution of higher order lines to the to-
tal absorption due to intergalactic H is only important
at short wavelengths for a given redshift, or at higher
redshifts for a fixed wavelength range, i.e. a given pass-
band. Because of these reasons, and in order to safe
computational time, we restrict ourselves to the inclu-
sion of the first ten transitions in the computation of the
absorption of a single absorber. The above shows that
our results should not be grossly affected by this fact.

Much more important for the computation of the ab-
sorption is the approach that is used, as becomes appar-
ent when comparing a mean absorption curve computed
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Fig. 7.2: Example of an absorption mask for a single line of sight out to a redshift zem = 3.5, including the absorption at
the Lyman edge and the first 10 Lyman resonant transitions for each absorber. For this redshift, the expected number of Lyα
forest absorbers and LLSs is, according to equation (5.23) and the MMC input distribution functions, 2504.94, and 6.271,
respectively. The actual number of systems of each type for this particular realisation, drawn from a Poisson distribution, is
2359 and 10, respectively. This unique line-of-sight hence intersects a total of 2369 absorbing systems. The arrow in the upper
panel and the vertical line in the lower panel show, respectively, the Lyman break and the Lyα absorption feature of a Lyman
Limit system at a redshift zabs = 3.3066, with a column density N HI = 19.6 cm−2 and a Doppler parameter b = 35 km s−1. The
red dashed line is a fit to the Lyα absorption line computed following Tepper-Garcı́a (2006) using the above parameters.
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Fig. 7.1: Absorption line strength at line centre, given as the
product of the central wavelength λ i and oscillatory strength
fosc, i of the corresponding transition, relative to the Lyα line
strength. For visualisation purposes, only the transitions from
Lyβ through Lyκ are shown. Note the rapid decrease of the
relative line strength with increasing order.

both using the Madau model and the MMC model. The
attenuation curve for the MMC model is simply ob-
tained by averaging the absorption at each given wave-
length over a sufficiently large number of lines-of-sight.
In other words, the mean absorption is the average of
an ensemble of absorption masks at a fixed redshift z em.
This comparison is illustrated in Fig. 7.3 for z em = 3.0.
Here we show the arithmetical mean at each wavelength
over an ensemble of 4 · 10 3 absorption masks, which
include the absorption at the Lyman edge and the first
ten Lyman transitions for each absorber, computed ac-
cording to the MMC model. When compared to the
attenuation curve resulting from Madau’s analytical ap-
proach, it os evident that even using the same input dis-
tributions does not quite result in the same mean absorp-
tion computed by different methods, as already recog-
nised by Bershady et al. (1999). The absorption accord-
ing to Madau’s method is over-estimated with respect
to the MMC model. Clearly, the difference is due to
the different approaches used, since both methods use
the same distribution functions of the absorber proper-
ties. It should be noted that the difference is already
significant for the first ten transitions, and that the ad-
dition of further lines would certainly not dramatically
increase the effect, for the reasons regarding the line
strengths of higher-order transitions relative to Lyα ex-
plained above.
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Fig. 7.3: Comparison of the mean absorption computed ac-
cording to the MMC model averaging over 10 4 lines-of-sight
(red, solid line) and the Madau model (blue, dashe line). The
noisy appearance of the MMC curve is due to the stochas-
tic nature of the absorption along random lines-of-sight. The
wavelength at which the absorption due to succesive resonant
transitions becomes effective, giving rise to the characteristic
stair–case profile, is indicated for the first ten transitions by
the vertical dashed line. However, for simplicity, the transi-
tions between Lyε and Lyκ have been omitted. Note the dif-
ference in the predicted absorption in the region between the
Lyβ and Lyκ lines.

7.2.2 The Statistics

Once we have an ensemble with a sufficiently large
number of absorption masks, we may compute for any
given spectrum an ensemble of values of any desired
photometric observable, e.g. the flux in a given pass-
band. The advantage of disposing of such an ensemble
of values is that it can be easily treated statistically to
obtain quantities of interest such as the mean and stan-
dard deviation around the mean. However, since the
distribution function of such an observable is unknown
a priori, we choose to treat our data using quantiles.
Formally, the quantile q x (A) of an random variable (ob-
servable) A can be defined as

x = 100 ·
∫ q x

0
P A (a) d a , (7.3)

where P A is the normalised distribution function of A
According to this definition, the median value of the

observable A is q 50 (A). In analogy to Gaussian statis-
tics, we define the mean of the distribution of A as the
median, and the ±1-, ±2- and ±3σ ranges around this
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value as q 50±34.13 (A), q 50±47.72 (A), and q 50±49.86 (A), re-
spectively.

In Paper II, we used this approach to compute the
mean evolution and the scatter of the cosmic flux decre-
ment D A. We now apply it here to the analysis of the
effect of the variation in the absorption along random
lines-of-sight on the luminosities of galaxies and their
photometric redshifts.

7.2.3 The Model Galaxy Spectra

We use as input spectra the model spectra obtained
from the  code (Bicker et al. 2004, and references
therein), and we brielfy explain it here for complete-
ness. In order to keep the number of free parameters
as small as possible, the model spectra are computed
as one-zone, closed-box models, in which the differ-
ent types of galaxies correspond to different time evo-
lutions of their star-formation rates (SFRs), as derived
from observations by Sandage (1986). For instance,
an elliptical-type galaxy has an exponentially declin-
ing SFR, with an e–folding time of τ∗ = 10 9yr. The
galaxies of type Sa-Sc have a SFRs which linearly scale
with the evolving gas mass of the galaxy, i.e. SFR
∝ G (t)/M tot, where M tot is the total mass (stars and
gas). A Sd-type galaxy is described by a constant star-
formation rate (CSFR). The characteristic times t ∗ for
the transformation of gas into stars range from 4 · 10 9

for Sa-type galaxies to larger than 1.5 · 10 10 yr for Sd-
type galaxies.

The distribution in mass of newly formed stars is as-
sumed to be given by a Salpeter Initial Mass Function
(IMF) with lower and upper mass limits m l = 0.08 M�
and m u ≈ 70 M�, respectively. The IMF is normalised
to a fraction of visible mass (FVM) of 0.5 in order for
the model galaxies to match after 1.2 ·10 10 yr the mass-
to-light (M/L) ratios of galaxies observed in the local
Universe. Correspondingly, the mass of the galaxy is
scaled in such a way that the luminosity in the B band
matches the mean observed value of the corresponding
galaxy type in the Virgo cluster (cf. Sandage 1986).

The stellar evolution is computed using isochrones
from the Padova Group (Bertelli et al. 1994) in its
version of November 1999, and later extended to in-
clude the thermal pulsing AGB phase for intermediate
mass stars (cf. Schulz et al. 2002). The stellar spec-
tra are taken from the library of models atmospheres
by Lejeune et al. (1997, 1998), which covers the whole
range of stellar metallicites, spectral types, and lumi-
nosity classes, and a wide wavelength range from 0.09

to 160,000 nm.
The redshift evolution of the galaxy spectra is com-

puted using the  code coupled to a cosmolog-
ical tool assuming a formation redshift z f orm = 9.8,
embedded in a cosmology characterized by the
set (H 0, Ω m, ΩΛ) = (0.72 h 100, 0.27, 0.73), consistent
with the most recent measurements of the cosmologi-
cal parameters by Spergel et al. (2006). For our pur-
pose, we had to increased by linear interpolation the
”resolution” of the spectra to a constant resolution
of ∆λ = 0.25 Å, covering a wavelength baseline from
90.00 nm to 121.60 · (1 + z gal) nm, i.e. the range af-
fected by intergalactic attenuation.

Magnitudes in any desired filter system are obtained
by folding the spectra with the respective response func-
tions for this filters (and detectors).

7.3 VARIATIONS IN MAGNITUDES

As an illustrative example, we calculate the effect of
the attenuation in Johnson’s U, B, V , and R as a func-
tion of galaxy redshift z gal for the particular case of an
Sd-type galaxy, which corresponds to a constant SFR.
We choose this type of galaxy, because it has the higher
UV flux at all epochs compared to the other types (E–
Sa), where the absorption due to intergalactic H is most
severe. All magnitudes are given throughout this work
in the AB photometric system (Oke 1974, Oke & Gunn
1983). The zero-point zp (T ) for a given normalised
passband T (λ) in this system is given by

zp (T ) ≡ 2.5 log
[∫ ∞

0
fAB (λ) · T (λ) d λ

]
, (7.4)

where fAB (λ) = 3.63 · 10−20 c 2 λ−2 erg s−1 cm−2Å
−1

.
The apparent magnitude in the passband T (λ) of a

galaxy at redshift z gal with intrinsic flux f em along a
particular random line-of-sight is given by

m i
λ (T ; z gal) = −2.5 log

[∫ ∞

0
f i

obs (λ) · T (λ) d λ
]

+ zp (T ) + BDM (z gal) , (7.5)

where f i
obs is given by equation (7.1), and the subscript i

denotes the ith line-of-sight with i = 1, . . . , N LOS . The
quantiy BDM is the bolometric distance modulus, and
it accounts for the dimming of light due to the distance
of the observed source. It is important to realise that
the observed flux as given by equation (7.1) encodes
not only the k-correction, but the e-correction as well.
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Recall that the e-correction accounts for the fact that
galaxies at high redshifts are seen in younger evolution-
ary stages, and their intrinsic spectra are not equivalent
to template spectra which have been redshifted.

For a given passband T and a fixed redshift z gal, we
compute the magnitudes for a total of 4 · 10 3 line-of-
sight, obtaining an ensemble of an equal number of
mangitudes {m i

λ (T ; z gal)}. From these, we calculate the
mean magnitude q 50(m λ(T ; z gal)) and the 1-, 2-, and 3σ
ranges around this value as explained in section 7.2.2.
We do this for the redshift range 0.01 < z gal < 5.0.

7.3.1 The intergalactic k–correction

We are primarily interested in the difference between
magnitudes with and without intergalactic attenuation,
a quantity designated by Meiksin (2006) as intergalactic
k–correction and denoted by k . We find the term ap-
propriate and thus adopt it here. However, it should not
be confused with the ”usual” k–correction which is due
solely to the expansion of the Universe, and which is al-
ready included in equation (7.5) through f i

obs and equa-
tion (7.1). 3 In general, k  is a function of redshift, the
given passband and, in our case, it is also depends on
the line-of-sight. Thus,

k i
 (T : z gal) ≡ m i

λ (T ; z gal) − m 0
λ (T ; z gal) (7.6)

where the reference magnitude m 0
λ (T ; z gal) corresponds

to the magnitude without attenuation, and is given by
equations (7.5) and (7.1) with Φ ≡ 1. Since the inter-
galactic k–correction and the apparent magnitude only
differ by an additive constant, the mean, and sigma
ranges of k  can be computed directly from those of
m λ.

In Fig. 7.4, we show the evolution of k  in John-
son’s U, B, V , and R bands for a Sd–type galaxy as a
function of z gal. Shown are the mean k  and the ±1-
, ±2-, and ±3σ ranges around this value. We include
for comparison the values of k  computed from the
Madau’s and the Meiksin’s models (cf. Paper II). The
evolution of k  is qualitatively the same in all pass-
bands, and therefore we will focus on the discussion of
the U band. The k  becomes noticeable at redshifts
z gal & 1.5, at which the Lyα line is shifted into the fil-
ter. Between redshifts 2 and 2.3, the Lyβ and higher–
order transitions are shifted into the passband and cor-
respondingly, the k  increases. Furthermore, the scat-

3 For an excellent reference on the computation of the k-correction
see Hogg et al. (2002).

ter in the absorption and consequently in k  also in-
creases, since the number of absorbers, especially of
those with the highest column densities, dramatically
increases with redshift. At z gal = 2.35, the Lyman edge
enters the passband and the intergalactic k–correction
rises correspondingly. At this point the scatter in the
absorption increases even more, since now the Lyman
edge of each absorber contributes to the dimming of
the flux and the presence of a few less or a few more
LLSs significantly changes the absorption and conse-
quently k . At redhifts slightly lower than the redshift
at which the Lyman edge is shifted to the wavelength
range at which the transmission of the filter reaches
its maximum, the ever increasing scatter in the absorp-
tion becomes even more apparent, until the galaxy be-
comes so faint that is not longer observable in the pass-
band. The redshift as which this happens is known as
the drop-out redshift, and we define as follows: If T (λ)
is the response function of a given filter, and λ e f f the
transmission–averaged wavelength of the filter response
function, i.e.

λ e f f ≡

∫ ∞
0 λT (λ) d λ∫ ∞
0 T (λ) d λ

, (7.7)

then the drop-out redshift z drop is the redshift of the
galaxy at which its Lyman break is just shifted red-
ward of λ e f f , i.e. z drop ≡ λ e f f /λL − 1, where λL =

91.175 nm. Accordingly, the drop-out redshift for the
standard Johnson U band is zdrop = 366.6 nm/λL − 1 =

3.0. Any estimate of the (mean) luminosity and scatter
around it in this passband is in principle of no use for
z > 3.0, since the galaxy is no longer observable, as a
result of the fact that with increasing redshift, its Ly-
man edge moves through the filter, and the galaxy gets
gradually fainter, ultimately dropping below the detec-
tion threshold. The drop-out redshift , however, should
not be taken as a rigorous limit, but only as an indica-
tion that the predicted magnitude of the galaxy should
be taken with caution. We list in table 7.1 the drop–out
redshifts of further passbands, together with the red-
shifts at which the Lyman edge, the Lyβ and the Lyα
lines are shifted into the corresponding passband.

The increase in the scatter of k  at redshifts in the
vicinity of z drop is best seen in the evolution of the col-
ors, as shown in Figs. 7.5, 7.6, and 7.7, where we show
the evolution of the U−B and B−V colors as function of
redshift, where the k  correction computed according
to the MMC, the Madau, and the Meiksin models.

Let us highlight two important facts: First, as already
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Fig. 7.4: Intergalactic k-correction in Johnson’s (a) U, (b) B, (c) V , and (d) R bands for an Sd-type galaxy using different
models for the attenuation: Madau’s model (solid line), Meiksin’s model (dot-dashed line), and the MMC model, where the
median is given by the dashed line, the ±1σ range is the white area around the median, and the ±3σ range is given by the
shaded area. The vertical dashed lines indicate the redshift at which a given absorption feature, e.g. the Lyman edge or a
absorption line, is shifted into the corresponding passband, as indicated. The vertical dot–dashed line indicates the drop–out
redshift, i.e. the redshift at which the Lyman edge of the galaxy is shifted redward of the wavelength at which the transmission
in the corresponding filter reaches its maximum. These values are summarised in table 7.1.
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Fig. 7.5: Evolution of U − B of an Sd-type galaxy includ-
ing the effect of the absorption along random lines-of-sight
using the Madau model (thick solid line), the Meiksin model
(thick double-dot dashed line), and the MMC model: mean
(thick dashed line), ±1σ range (white area around the mean),
and ±3σ range (white plus gray area around the mean). The
vertical dot–dashed line indicates in each case the drop-out
redshift of the bluest passband.

0 1 2 3 4 5
zgal

0

1

2

3

4

5

B-
V

Fig. 7.6: Evolution of B−V of an Sd-type galaxy including the
effect of the absorption along random lines-of-sight. Meaning
of lines and shaded areas as in Fig. 7.5.

argued, the difference in the approach to account for the
intergalactic attenuation even when using the same in-
put distributions for the absorber parameters becomes
evident from the evolution of the mean k  using the
Madau model and the median as computed with the
MMC model. However, the differences between these
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Fig. 7.7: Evolution of V − R of an Sd-type galaxy including
the effect of the absorption along random lines-of-sight. Lines
and shaded areas as in Fig. 7.5.

models, and between the Meiksin model amount to less
than 0.2 mag at z gal ≤ z drop (U), and both the Madau
model and the Meiksin model are all consistent with the
MMC model at the 3σ level. The larger differences at
redshifts above the drop-out redshift need not be con-
sidered, since they escape observations. The second
important fact to be highlighted is the modest scatter
in the evolution of k  or m λ, as already pointed out by
Bershady et al. (1999). This is somehow counterintu-
itive, since one would expect that the contingent pres-
ence of a few absorbers less or more than average at
column densities N HI ≥ 17.21 cm−2 – the column den-
sity demarcation between Lyα forest and Lyman limit
systems – cause sufficient differences in the absorption
for galaxies with different sight-lines, causing them to
have significantly different brightness, and not just scat-
ter around the expected magnitude at a level of ±0.1
mag. The reason for this counterintuitive effect is that
at all redshifts, the absorption features, i.e. Lyα, Ly-
man break, etc., of the individual absorbers are blue-
ward of the corresponding strong absorption features
of the observed galaxy. Moreover, the mean number
of Lyα forest systems dramatically increases with red-
shift, but their scatter and the corresponding scatter in
their absorption is not significant (cf. Paper II, Section
5.3). In other words, even though the increasing mean
number of Lyα forest absorbers causes the mean k  to
increase, their scatter does not cause the dispersion in
k  to increase as well. Besides, these systems dom-
inate the absorption in the line-region, i.e. at redhifts
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lower than z LL, over the optically thicker LLSs (cf. dis-
cussion in Paper II). These can have a significant contri-
bution to the absorption only in the Lyman break region,
i.e. at rest–frame wavelengths smaller than 91.175 nm,
through photoelectric absorption of light. This effect
is reflected by the increase in the scatter of k  at red-
shifts just below z drop. The overall trend is certainly not
affected by the fact that only the first ten Lyman transi-
tions are included.

A further reason for the scatter in the absorption in
the line-region to be modest is the fact that the process
of computing broad–band magnitudes effectively aver-
ages the observed flux over a wide wavelength range,
typically of order 200–300 Å. For comparison, the Lyα
absorption line of systems with a column density N HI =

10 18 cm−2 and a Doppler parameter b = 36 km s−1

has a rest equivalent-width of the order of 1 Å. At
z gal = 2.5, the mean number of sytems with column
densities in the range 10 17.21 − 10 20 cm−2 is 5. Hence,
assuming the absorption lines of all optically thick sys-
tems at this redshift have this same equivalent width,
the combined absorption is around 1/10 of the width of
a typical broad-passband. This optimistic estimate as-
sumes implicitly that all absorbing system are just at the
right redshift in order for their absorption lines to fall
into the wavelength range of the given passband. Such
a clustering and especially at all lines-of-sight is highly
improbable. For the case of the more numerous, but op-
tically thinner Lyα forest clouds, the net effect is that,
by averaging the observed flux over a given filter, the
absorption lines are ”smeared out”, which diminishes
the range in transmission values and hence its scatter as
computed from its quantiles.

The line of reasoning presented above implies also
that the scatter in the absorption due to stochasticity
would be larger if averaging the observed flux, i.e. com-
puting magnitudes, over narrower wavelength ranges.
In other words, the variation in the absorption from line-
of-sight to line-of-sight should be larger for narrower
filters due to the fact that the absorption profiles corre-
late over small ∆λ. In order to test this, we repeat the ex-
ercise described above this time using Strömgren’s u, v,
b, and y passbands, which are narrower than Johnson’s
filters. A comparison of the filter response functions is
shown in Fig. 7.8. The evolution of the magnitudes in
the Strömgren filters is shown in Fig. 7.9.

As suspected, the scatter in all four passbands is
larger than in the Johnson filters, even though it is still
of the order of ±0.2 mag just below the drop–out red-
shift in the u passband. Also, and in contrast to the
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Fig. 7.8: Comparison of the bandwidth of Standard Johnson’s
U, B, V , and R, and Strömgren u, v, b, and y.

Johnson filters, in all these four passbands the character-
istic features in the evolution of k  caused by the shift
of the different absorption lines into and out of the filters
are more pronounced, again due to the narrower band-
width of these filters compared to Johnson’s. In partic-
ular, it is clearly seen how Lyα is shifted into a pass-
band, causing the k  to increase and to reach a local
maximum at redshifts where Lyα is shifted to λ e f f (see
equation 7.7). From this point on, k  remains rougly
constant at the ±1σ level, with Lyα lines being shifted
into and out of the filter, until it rises again when the
Lyβ lines is shifted into the filter. At the ±1σ level, this
plateau remains visible until higher redshifts, due to the
fact that Lyβ, being roughly a factor 10 weaker than Lyα
(see Fig. 7.1), does not contribute significantly to the
absorption at this level. Only when higher-order lines
are shifted into the passband and Lyβ is shifted towards
λ e f f , does k  rise again. Such a plateau is evidently
not present in the Johnson filters. The reasons is that
these filters are not narrow enough to allow the Lyα to
be shifted to λ e f f without the Lyβ being already shifted
into the filter, causing k  to rise continously, as can
be seen in Fig. 7.4. This becomes even more apparent
when comparing the evolution of k  in the U and the
R filters. The U band, being narrower than the R band,
still allows for the effect to be marginally observable,
while the evolution of k  in the latter is monotonically
increasing due to the enormous bandwidth of this filter.
To this adds the fact that the mean number of absorbers
and hence the effective absorption increases with red-
shift, which makes the evolution of k  stronger.
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Fig. 7.9: Intergalactic k-correction in Strömgren (a) u, (b) v, (c) b, and (d) y bands for an Sd-type galaxy using different models
for the attenuation: Madau’s model (solid line), Meiksin’s model (dot-dashed line), and the MMC model, where the median is
given by the dashed line, the ±1σ range is the white area around the median, and the ±3σ range is given by the shaded area.
The vertical dashed lines indicate the redshift at which a given absorption feature, e.g. the Lyman edge or a absorption line, is
shifted into the corresponding passband, as indicated. The vertical solid line indicates the drop–out redshift, i.e. the redshift at
which the Lyman edge of the galaxy is shifted redward of the wavelength at which the transmission in the corresponding filter
reaches its maximum. These values are summarised in table 7.1.
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Table 7.1: Characteristic redshifts for two different sets of
filters: Standard Johnson’s U, B, V , and R and Strömgren u,
b, v, and y. The third, fourth, and fifth column contain the
redshift at which the Lyman edge, the Lyβ, and the Lyα line
are redshifted in the given passband, respectively. The last
column gives the drop–out redshift. The corresponding filter
functions are available at the Asiago Database on Photometric
Systems a (Moro & Munari 2000).

S ystem Passband z LL z Lyβ z Lyα z drop

Johnson U 2.35 1.97 1.51 3.00

Johnson B 2.95 2.50 1.96 3.84

Johnson V 4.21 3.63 2.91 5.04

Johnson R 4.70 4.07 3.28 6.61

Strömgren u 2.46 2.07 1.59 2.80

Strömgren v 3.11 2.66 2.09 3.51

Strömgren b 3.77 3.24 2.58 4.12

Strömgren y 4.65 4.02 3.24 4.99

a http://ulisse.pd.astro.it/Astro/ADPS

Since the four Strömgren passbands have roughly
the same width, the plateau-effect is stronger for the
passbands at larger effective wavelength, because of
the combined effect of the increase in the wavelength
range between absorption lines and the increase in the
strength of k  with redshift.

In either case, however, the scatter in the evolution of
k  is small both in broad- or narrow-band filters to be
observable. We conclude that the magnitudes of galax-
ies observed in deep surveys are not expected to scatter
significantly due to differences in the absorption along
different lines-of-sight. In other words, the stochasticity
effects in the absorption do not contribute significantly
to the actual observed scatter, which must hence hence
rather be caused by differences in the instrinsic proper-
ties of galaxies.

7.4 IMPLICATIONS FOR THE ESTIMATES OF PHO-
TOMETRIC REDSHIFTS

Measurements of spectroscopic redshifts are very time-
consuming for distant, very faint galaxies. Instrumen-
tal as well as time allocation limitations make it practi-

cally impossible to systematically obtain spectroscopic
redshifts for large numbers of distant galaxies. Accesi-
ble are only a few of the very brightest objects at any
redshift beyond 2 – and these, for sure – are not rep-
resentative of the population at those redshifts. Deep
multi-band photometry in combination with dedicated
photometric redshift techniques readily provide reliable
photometric redshifts for large numbers of galaxies cov-
ering a wide range in intrinsic luminosities out to z & 5.

The estimate of redshifts using broad–band photome-
try has been significantly improved in the last years, ob-
taining a match between spectroscopic and photometric
redshifts of the vast majority of galaxies of unprece-
dented accuracy (see e.g. Sawicki et al. 1997, Benı́tez
2000, Coe et al. 2006). However, there are still a few
cases where the spectroscopic redshifts have been accu-
rately and reliably determined, and the corresponding
photometric redshifts deviate dramatically from them
(so–called catastrophic redshifts). This fact indicates
that the technique used to estimate photometric red-
shifts still has some problems. Classical sources of error
are the photometric errors, even though it is thought that
these do not dominate the residuals between spectro-
scopic and photometric redshifts (Lanzetta et al. 1998).
Further uncertainties in the estimate of the photomet-
ric redshifts are introduced by the different methods
used, i.e. the empirical training–set and the SED-fitting
methods (Yee 1998), due to the particular approach
used. The trainig–set approach consists basically in us-
ing a set of observed SEDs of galaxies for which red-
shifts are avaiable to derive an empirical, functional re-
lation between redshifts z and colours C i of the form
z = z (C i). This relation is then used to compute the
redshift of an object for which the colors are know–
hence the term ”training-set”. However, it is a strong
assumption that such a functional form exists and is
well-behaved, i.e. biyective, and this assumption is not
necessarily given in general. Furthermore, the extrap-
olation of this functional form, assuming that it exists,
to values of the colours out of the range of the training
set, may lead to wrong estimates of the object’s red-
shift. The SED-fitting technique consists in compar-
ing the observed spectral energy distributions (SEDs)
of an object with a manifold of theoretical SEDs and
corresponding redshifts, computed using evolutionary
synthesis models such as  (Bruzual A. & Char-
lot 1993),  (Fioc & Rocca-Volmerange 1997), or
 (Bicker et al. 2004, and references therein). Com-
pared to methods based on local template spectra, these
evolutionary synthesis libraries have the advantage to
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include the evolutionary effect, i.e. account for the fact
that galaxies at higher redshifts are observed in younger
evolutionary stages.  models, in particular, have
the additional advantage that they also account for the
importance of subsolar stellar metallicities in galaxies
at higher redshifts. This fact is of particular importance
in the context of photometric redshifts for galaxies from
deep multi-band imaging.

The comparison between measured and theoretical
SEDs can be achieved, for example, through a χ 2–
technique, in which case the object is assigned the red-
shift corresponding to the best matching model, i.e. that
with the minimum χ 2. Recently, another approach to
find a best-matching model based on Bayesian statistics
has been shown to provide very accurate photometric
redshifts when compared to spectroscopic ones (see e.g.
Benı́tez 2000).

Independently of the statistical treatment used to find
a best model, several factors may introduce large un-
certainties in the redshift estimate for an object. For
instance, local-galaxy template SEDs may not be com-
pared to high-redshift objects, since their evolutionary
stages are very different. In order to account for this,
the template SEDs used should include the evolutionary
(or e–)correction, i.e. the fact that galaxies have differ-
ent colors at different evolutionary stages (Bicker et al.
2004). They also should account for the k-correction,
i.e. the dimming and redshifting of the emitted intrin-
sic flux due to the expansion of the Universe. Another
important factor that affects the observed SEDs is the
restframe UV attenuation due to absorption of light in
the intergalactic H. A widely used, almost standard,
approach to correct for this is to add the mean absorp-
tion using the Madau model (Madau 1995), as done e.g.
by Fontana et al. (2000). There are two concerns about
this: First, this approach does not take into account that
the absorption along random line-of-sight is stochastic
in nature. We showed above that the scatter in the in-
tergalactic absorption can have a non–negligible impact
on the colors of different types of galaxies, and this may
introduce a further uncertainty in the estimate of photo-
metric redshifts, as first noted by Yee (1998). Further-
more, it was shown above that the mean attenuation at
a given redshift computed using the Madau model does
not match the mean attenuation predicted by the MMC
model and, as first shown by Bershady et al. (1999),
it turns out that the correct way of accounting for the
mean intergalactic attenuation is the Monte Carlo ap-
proach. It is true that the scatter in individual lumi-
nosities and colors due to the stochastic nature of the

absorption is not significant. However, it needs to be
explored how this scatter affects the estimate of pho-
tometric redshifts, given the complex topology of the
manifold of solutions. The goal of this section is thus
to quantify the uncertainties introduced in the estimate
of photometric redshifts when the model SEDs only ac-
count for the mean intergalactic attenuation.

7.4.1 Effects on the photometric redshifts

In order to asses the effect of variations in the inter-
galactic absorption from line-of-sight to line-of-sight,
we generate at a given redshift z gal a sample of mock
SEDs which shall be compared to a grid of model
SEDs. The mock SEDs are computed in Johnson’s
U, B, V , and R bands for a given model galaxy input
spectrum which has been affected by intergalactic at-
tenuation using our ensemble of absorption masks, and
which includes the e- and k-corrections as computed
with the  code. Since the absorption encoded in
each masks is unique, it is clear that the SEDs com-
puted in this way will, in general, differ from each other.
This procedure mimics the observations of galaxies of
a given type and at a given redshift, i.e. with an identi-
cal intrinsic spectrum, along different directions in the
sky. The model SED at each given redshift is computed
for the same input spectrum, corrected for intergalac-
tic attenuation with the Madau model. This is done for
redshifts 0.01 < z gal < 5.0.

The comparison of mock and model SEDs is per-
formed with a modified version of the AnalySED tool
which makes use of the χ 2 minimisation technique (for
a detailed description of the AnalySED tool see Anders
et al. 2004). As usual, the χ 2 value is given by

χ 2 ≡

N mag∑
i

[
(m i

mock − m o f f ) − m i
mod

] 2

σ 2
i

. (7.8)

where N mag is the number of points, i.e. magnitudes in
the SED. The quantity m o f f is the offset between the the
mock and model SEDs averaged over all magnitudes,
and is needed to compute the photometric mass and to
gauge the mock SEDs. The uncertainty σ i of each term
in the sum is given by the quadratic sum of the individ-
ual uncertainties in the corresponding magnitude of the
model SED and the mock SED, i.e.

σ 2
i = σ 2

i (mock) + σ 2
i (model) . (7.9)

We estimate that magnitudes computed from our
model galaxy spectra, and hence both our model and
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mock SEDs, are accurate to within ±0.1 mag at the 1σ
level.

Each model SED is assigned a probability accord-
ing to exp (−χ 2). The best-matching model SED is
obviously that with the highest probability. A ±1σ
uncertainty interval is defined, in analogy to Gaussian
statistics, by summing the probabilities assigned to each
model SED arranged in descending order up to a total
value of 0.68. The parameter, in our case the redshift,
corresponding to the template SEDs with the largest and
smallest probability within this range define the ±1σ
uncertainty in the estimate of the parameter. We do not
introduce further constraints into this analysis, as e.g.
flagging mock SEDs of galaxies at drop-out redshifts
for a given filter.

The goal of the procedure described above is to quan-
tify to which extent the redshift of a model galaxy
whose spectrum includes stochastic intergalactic atten-
uation is recovered when compared to a grid of model
SEDs that are affected only by mean intergalactic atten-
uation. In a first approach, we limit our analysis to an
Sd-type input spectrum, both for the mock and model
SEDs. Following this approach, we obtain for each
mock SED in the sample at a fixed z gal a correspond-
ing ensemble of best estimates BE (z phot) for z phot, and
their corresponding uncertainties ±σm (z phot) as given
by the procedure described above. In addition, we com-
pute for the ensemble of BE (z phot) the median value
µ (z phot) and define the dispersion of BE, ±σ BE (z phot),
by max(BE) − µ and µ −min(BE), respectively, at each
redshift. We follow two approaches, which differ only
by the fact that the average off-set m o f f between the
mock and model SEDs is included or not. The result of
this comparison is shown in Fig. 7.10. Here, we show
at each z gal the median value µ (z phot) for the distribu-
tion of the best estimates BE (z phot) (blue-solid line), to-
gether with its corresponding dispersion, ±1σm (z phot)
(brown-shaded area) and 1 ± σ BE (z phot) (gray-shaded
area), for: (a) no off-set, and (b) with offset. Let us
first focus on case (a). Note first that the galaxy red-
shifts are almost exactly recovered at redshifts z gal . 3
with 1σ ≤ 0.01. Above this redshift, the galaxy drops
out of the U band and also the scatter in the attenua-
tion becomes large, up to 1σ ≈ 0.25. Both these re-
sults are expected from the small scatter in the colors
due to stochastic intergalactic attenuation, as shown in
Fig. 7.5, and the increase in the scatter at redshifts larger
than z drop, as shown in Fig. 7.4 Note further that the
scatter as computed from the quantile formalism and
from the AnalySED tool are almost identical at all red-

shifts. Interestingly, the value of µ (z phot) is slightly
lower at redshifts z gal & 3, which means that photomet-
ric redshifts estimated using a set of SEDs affected only
by a mean intergalactic absorption are slightly underes-
timated. This may be due to the fact that the scatter in
the evolution of the magnitudes and colors is asymmet-
ric with respect to the median, as can be seen in Figs. 7.4
and 7.5.

The bottom line of this analysis is that the stochas-
tic intergalactic attenuation has little or no effect on the
estimate of photometric redshifts under ideal circum-
stances, specifically, when the type and especially the
mass of the galaxy is known. This is, however, not
given in general, and for this reason it is necessary to
include the magnitude off-set in the computation of the
χ 2 value (cf. equation 7.8). Surprisingly, it turns out
that in this case the effect of the stochastic attenuation
is amplified, as illustrated in Fig. 7.10, panel (b). As
can be seen, both the scatter as given by σm (z phot) is
larger at all redshifts compared to its value for case (a).
In particular, σm (z phot) increases slowly at z gal & 1,
and becomes large in the range 1.5 < z gal < 2.75. In
particular, σm (z phot) increases significantly at redshifts
for which the Lyα line is shifted into the U and the B
bands, respectively, making the estimate of the photo-
metric redshift uncertain to within ∆z phot ≤ 0.25, in
agreement with estimates by Meiksin (2006) using sim-
ilar passbands. At z gal ≈ 3, a series of coincidences
decreases the scatter in z phot: first, this redshift corre-
sponds to the drop-out redshift for U band as defined
above; also at this redshift, the Lyman edge is shifted
into the B band, while Lyα moves into the V band. At
z gal > 3, the scatter again increases. Note, however, that
the behaviour of µ (z phot) in this case is almost identical
to that in case (a), and that this is close to the iden-
tity line at all redshifts. Furthermore, σ BE (z phot) does
not differ significantly from its counterpart in case (a),
which is consistent with the result that the best estimates
of z gal are not significantly affected by the stochastic ef-
fect of intergalactic attenuation.

The reason for the large scatter σm (z phot) introduced
by the magnitude off-set is rather puzzling. However,
this effect is not an artifact of the code, since we made
sure that a perfect match between z gal and z phot is ob-
tained in both cases, i.e. with and without introduc-
ing the magnitude off-set, for identical mock and model
SEDs. Since, as explained above, the magnitude off-
set is related to the overall scaling of the flux, and
hence to the mass of the galaxy, we expect the mag-
nitude of the scatter to be larger when estimating pho-
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Fig. 7.10: Photometric estimates obtained from a sample of mock SEDs, which were computed in Johnson’s U, B, V , and R
bands for an sd-type model galaxy spectrum affected by intergalactic attenuation using the MMC model, with (b) and without
(a) including the magnitude offset m o f f . The best estimate BE (z phot) for the photometric redshift in each case is calculated
with a χ 2 minimisation technique by comparing the sample of mock SEDs to a grid of model SEDs, computed using the same
input spectrum affected by integalactic absorption following Madau (1995). At each redshift, the mock sample consists of
4 · 10 3 SEDs and of an equal number of BE (z phot)’s. The red-dashed line indicates a perfect match between z gal and z phot.
The blue-solid line gives for each z gal the median value µ (z phot) of the ensemble of BE (z phot)’s. The gray-shaded and brown-
shaded areas correspond to the ±1σ q (z phot) and ±1σm (z phot) ranges, respectively (see text for details). For reference, the
vertical dashed lines denote the redshifts at which various absorption features (Lyα, Lyman limit) are shifted into the indicated
passband. The drop-out redshift indicates the redshift at which the Lyman limit is moved across the effective wavelength of
the given passband.
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tometric redshifts for different galaxies with a priori un-
known types. We illustrate this by comparing mock
SEDs of an Sd-type input spectrum to a grid of model
SEDs computed using a Sa-type spectrum. This ap-
proach should give a hint on the uncertainties in the
estimates of photometric redshifts due to the confu-
sion of different galaxy types, which are in general not
known, especially at high redshift. The result is shown
in Fig. 7.11. In general terms, it can be seen that the
photometric redshifts dramatically deviate from the ac-
tual redshift at z gal ≤ 1.5, with photometric redshift in
general being overestimated, as seen on the median and
the scatter as given by σm (z phot). Note, however, that
σ BE (z phot) = 0 in this range, which is consistent with
the fact that the intergalactic attenuation does not have
any effect at z gal < 1.5. At z gal > 2, the behaviour
of the estimated redshifts is qualitatively the same as in
Fig. 7.10, even though the scatter as given by σm (z phot)
is larger, especially at 2 < z gal < 2.75. In this range
and also at higher redshifts, photometric redshifts are
in general underestimated. This scatter at this redshifts
is again introduced by the magnitude off-set due to the
fact that typical Sa and Sd galaxies have very differ-
ent masses. Note that at z gal > 3, the scatter as given
by σm (z phot) is comparable to the scatter as given by
σ BE (z phot). The reason for this is that the colors of
galaxies at these redshifts are very similar, irrespective
of their type, due to the strong cumulative intergalac-
tic absorption, and also because at those redshifts all
galaxies had stronger star formation and younger stellar
populations

7.5 SUMMARY & CONCLUSIONS

We have presented a model that accounts for the in-
tergalactic absorption due to neutral hydrogen in the
form of Lyα forest and Lyman limit systems, based on
the approach by Bershady et al. (1999), complemented
with the input distributions for the properties of Lyα ab-
sorbers used by Madau (1995). This combination was
suggested by our comparison of different input distribu-
tion functions of the absorbers properties with respect to
their predictions for the redshift evolution of the cosmic
flux decrement reported in a previous work.

We showed that the scatter in the magnitudes of a
galaxy in a given filter due to the random distribution
of intergalactic neutral hydrogen along the line-of-sight
is rather small for redshifts lower than the correspond-
ing drop-out redshift z drop of a filter, and can be signifi-
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Fig. 7.11: Photometric redshifts for a sample of mock SEDs
computed in Johnson’s U, B, V , and R for an Sd-type galaxy,
compared to a grid of model SEDs computed in the same filter
system for an Sa-type galaxy. Lines and colored areas as in
Fig. 7.10.

cantly larger close to and above this redshift. However,
galaxy luminosities and magnitudes can no longer be
accurately determined for z > z drop, and hence their
scatter need no longer be consider in that range.

We apply our model in order to asses the impact
of the stochastic attenuation on the estimates of pho-
tometric redshifts, and find that photometric redshifts
are in general underestimated, even though the effect
is small. However, we find that the uncertainty due to
the stochastic intergalactic attenuation is amplified due
to the confusion of the different types of galaxies with
different masses, present in deep surveys.

We conclude that the stochastic nature of the H dis-
tribution in the IGM has no observable impact on the
colors and luminosities of galaxies, but may have a non-
negligible effect on the estimates of photometric red-
shifts. Furthermore, the mean intergalactic attenuation
is not negligible at all, as previously and convincingly
shown by Madau (1995) and Bershady et al. (1999), and
it should be properly taken into account as presented
here. However, the evolution of the mean magnitudes
and colors of normal galaxies as computed by Bicker
et al. (2004) and which include the correction for the
mean attenuation, are not affected by the stochastic ab-
sorption in the IGM.

An extensive and detailed comparison of photomet-
ric redshifts obtained with our methods with observed
spectroscopic redshifts is the next step in this investiga-
tion.



CHAPTER 8

Summary & Outlook

The formation and evolution of galaxies is one of the
most active fields in Astrophysics to date. Important
questions to be addressed concern the mechanisms be-
hind the formation of different types of galaxies, and
their individual properties such as stellar populations,
morphologies, chemical abundances, all of which de-
termine their spectro-photometric properties.

For galaxies in the nearby Universe, spectra can be
obtained, and their global morphologies and structures
within and associated to the galaxy (such as star clus-
ters, star-forming regions, etc.) can be individually re-
solved, with which a deep insight into the on-going
physical processes can be gained. Also, a wealth of in-
formation about their past evolution, i.e. star formation
histories, interactions, etc., can be obtained by the anal-
ysis of their Spectral Energy Distributions (SEDs).

Even though spectra can also be taken for some of the
brightest galaxies at higher redshifts, this few objects
are truly not representative of the mean galactic popu-
lation at those redshifts. Hence, in general, the study of
the properties of these galaxies is limited to the analysis
of their observed SEDs.

However, the observed SEDs substantially differ
from their intrinsic SEDs because of various effects,
such as the evolutionary effect, the cosmological effect,
and the intergalactic attenuation. Any model describing
the redshift evolution of the galaxies should account for
all these effects. It turns out that the only tool that al-
lows for the consistent description of the evolution of
galaxy properties – in particular of their colors and lu-
minosities – including evolutionary and cosmological

effects as well as the intergalactic attenuation, are the
Evolutionary Synthesis models, such as .

This particular model, as many others, accounts for
the intergalactic attenuation in a more or less standard
way, i.e. by including only the mean absorption in the
intergalactic medium due to neutral hydrogen. How-
ever, the distribution of intergalactic neutral hydrogen
H) along the line-of-sight is random in nature, and de-
viations from a mean absorption are expected. Corre-
spondingly, a scatter in the colors and luminosities ob-
served along different line-of-sight should be observed
as a consequence of this stochasticity. Hence, it is nec-
essary to include in the  code a correction for the
variations in the intergalactic attenuation, in order to
correctly interpret observations of galaxies, especially
at high-redshift, where the attenuation is stronger.

The accurate description of the intergalactic attenua-
tion, in particular of its variation along random lines-of-
sight, requires a detailed knowledge of the distribution
and physical state of the intergalactic H along the line-
of-sight. In other words, the evolution with redshift of
the number density, of the column densities, and of the
temperatures – as given by the Doppler parameter – of
the intervening (Lyα) absorbing systems embedded in
the intergalactic medium (IGM) is needed.

These properties can be determined, for example,
from the analysis of the absorption lines imprinted in
the spectra of background sources which are associated
to the the Lyα absorbers. The usual method consists
in looking for the best set of values for the column den-
sity and Doppler parameter that best match the observed
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profile. In the case of the absorption lines found on
QSO spectra and attributed to Lyα absorbers, the ab-
sorption line profiles are best modeled by Voigt profiles,
which are mathematically given in terms of the Voigt-
Hjerting function.

In this work, I presented a simple analytic approxi-
mation to the Voigt-Hjerting function with which Voigt
profiles can be modeled with high accuracy for an ar-
bitrary range in wavelength (or frequency), and for the
range of column densities and Doppler parameters char-
acteristic to intergalactic neutral hydrogen. This ap-
proach offers a great compromise between speed, accu-
racy, and flexibility in its implementation. Furthermore,
it is not limited to intergalactic neutral hydrogen, but is
valid to model absorption Voigt profiles found in any
type of spectrum (stellar, solar, etc.), which arise in a
medium whose damping parameter and column density
fall in the range characteristic to intergalactic H. This
work is certainly an invaluable contribution to the im-
provement of the analysis of QSO absorption lines, and
consequently to our knowledge of the evolution of the
properties of the Lyα absorbers.

The properties of these absorbers as obtained from
observations are usually parametrized by a set of dis-
tribution functions which describe the evolution with
redshift of their average number, column densities, and
Doppler parameters. However, all these parameters are
truly random variables and thus their values are in gen-
eral different for different absorbers and along differ-
ent lines-of-sight. Due to the complex dependence of
the absorption along a particular line-of-sight on all this
parameters, the only possible method to describe it cor-
rectly is the Monte Carlo approach. The procedure
in order to construct a model that accounts for the in-
tergalactic absorption along random line-of-sight using
this approach was developed and presented with great
detail in this work.

It is clear that, independently of the approach fol-
lowed, the intergalactic absorption due to intergalac-
tic H cannot be properly modelled without a consis-
tent set of input distributions for the physical parame-
ters of the absorbers constrained from observations. In
order to discriminate between two widely used sets of
such distributions found in the literature, we used our
model to compute the redshift evolution of the cosmic
flux decrement D A , and found that the Monte Carlo
method in combination with a particular set of distri-
bution functions very accurately matches the measure-
ments of the cosmic flux decrement in the redshift range
0.2 < z < 5.41. The measurements of D A in the range

2.71 < z < 5.41 were actually performed by ourselves,
with which we expanded the redshift range of measure-
ments available so far in the literature.

Moreover, we derive from first principles that the dis-
tribution of values of the cosmic flux decrement at a
given redshift is well described by a lognormal distri-
bution at low redshifts and even better by a Gaussian
distribution at high redshifts, a result which was con-
firmed by numerical simulations of the evolution of the
D A performed with our model. This result implies that
at redshifts where D A is distributed lognormally, the
effective optical depth of the intergalactic H obeys a
normal distribution. The result that D A is distributed
lognormally leads to the question of whether this fact is
linked in some way to the assumption that the primor-
dial density fluctuations that gave origin to the structure
formation in the Universe, and that ultimately gave rise
to the Lyα absorbers, obey a lognormal distribution as
well. In the case of an affirmative answer, this result
would provide a great insight into the mechanism re-
sponsible for the formation of structure in the Universe.

Once we identified a suitable set of distributions for
the physical properties, we use our model for the inter-
galactic absorption due to neutral hydrogen in the form
of Lyα forest and Lyman limit systems to compute the
variations in the luminosities and colors of galaxies in
the redshift range 0 < z < 5, and found that the effect
is too small to be observable. We also explored for the
first time the impact of the stochastic attenuation on the
estimates of photometric redshifts, and find that photo-
metric redshifts are in general slightly underestimated,
even though the effect is small. However, we find that
the uncertainty due to the stochastic intergalactic atten-
uation is amplified due to the confusion of the different
types of galaxies with different masses, as is the case of
the galaxies observed in deep surveys.

It turns out in the light of the above results that the
scatter in the colors and luminosities of galaxies ob-
served in Deep Fields cannot be accounted for by the
stochastic absorption of their light due to the presence
of randomly distributed intergalactic neutral hydrogen
along their lines-of-sight. Nevertheless, the mean atten-
uation does have a significant impact on the colors and
luminosities, and the only correct method to account for
this effect is the Monte Carlo approach in combination
with a suitable set of input distribution for the properties
of the Lyα absorbers, as described in this work.

Moreover, the mild effect of the stochastic attenua-
tion on the photometric redshifts found here may be ob-
servable with current facilites. However, our approach
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to estimate photometric redshifts has to be tested first
against reliable spectroscopic redshifts. Once the reli-
ability of our method is established, we may use our
approach to analyse large sample of multi-wavelength
observations of galaxies in order to test whether the
stochastic attenuation does affect the photometric red-
shifts as predicted by our model. This is, however, be-
yond the scope of this work and will be the starting
point of future work.
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Spergel, D. N., Bean, R., & Doré, O. e. a. 2006, ArXiv Astrophysics e-prints

Spitzer, L. 1978, Physical processes in the interstellar medium (New York Wiley-Interscience, 1978. 333 p.)

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Steidel, C. C. & Sargent, W. L. W. 1987a, ApJ, 318, L11

Steidel, C. C. & Sargent, W. L. W. 1987b, ApJ, 313, 171

Telfer, R. C., Zheng, W., Kriss, G. A., & Davidsen, A. F. 2002, ApJ, 565, 773

Tepper-Garcı́a, T. 2006, MNRAS, 369, 2025

Tepper-Garcı́a, T. & Fritze, U. 2007, ArXiv e-prints, 705

Tytler, D. 1987, ApJ, 321, 49

Tytler, D., Kirkman, D., O’Meara, J. M., et al. 2004a, ApJ, 617, 1

Tytler, D., O’Meara, J. M., Suzuki, N., et al. 2004b, AJ, 128, 1058

Umemura, M. & Ikeuchi, S. 1985, ApJ, 299, 583

Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, AJ, 122, 549

Vázquez, G. A., Carigi, L., & González, J. J. 2003, A&A, 400, 31
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The Lyman series
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Table A.1: Values of the central wavelength, oscillatory strength and damping constant for the first 24 Lyman transitions.

Transition Central Wavelength [ nm] fosc Γ[s−1]
Hα 121.56701 0.416400 6.265 · 108

Hβ 102.57223 0.079120 1.897 · 108

Hγ 97.25368 0.029000 8.126 · 107

Hδ 94.97431 0.013940 7.640 · 107

Hε 93.78035 0.007799 4.423 · 107

Hζ 93.07483 0.004814 1.236 · 107

Hη 92.62257 0.003183 8.249 · 106

Hθ 92.31504 0.002216 5.782 · 106

Hι 92.09631 0.001605 4.208 · 106

Hκ 91.93514 0.00120 3.158 · 106

Hζ 93.07483 0.004814 1.236 · 107

Hη 92.62257 0.003183 8.249 · 106

Hθ 92.31504 0.002216 5.782 · 106

Hι 92.09631 0.001605 4.208 · 106

Hκ 91.93514 0.00120 3.158 · 106

Hλ 91.81294 0.000921 2.430 · 106

Hµ 91.71806 0.000722 1.910 · 106

Hν 91.6429 0.000577 1.529 · 106

Hξ 91.5824 0.000469 1.243 · 106

Ho 91.5329 0.000386 1.024 · 106

Hπ 91.4919 0.000321 8.533 · 105

Hρ 91.4576 0.000270 7.186 · 105

Hσ 91.4286 0.000230 6.109 · 105

Hτ 91.4039 0.000197 5.237 · 105

Hυ 91.3826 0.000170 4.523 · 105

Hφ 91.3641 0.000148 3.933 · 105

Hχ 91.3480 0.000129 3.443 · 105

Hψ 91.3339 0.000114 3.030 · 105

Hω 91.3215 0.000101 2.679 · 105



APPENDIX B

The Gauß approximation to the Voigt-Hjerting
function

The Laplace transform L f [s] of a function f (t) is defined as

L f [s] ≡
∫ ∞

0
f (t) e−st d t , s > 0 . (B.1)

For example, if für f (t) = cos(bt), b ∈ R, then

Lcos[s] =

∫ ∞

0
cos(bt) e−stdt =

s
b2 + s2 . (B.2)

It follows from this, that the Voigt-Hjerting function

H (a, x) =
a
π

∫ +∞

−∞

e−y2

(x − y)2 + a2 d y x, a ∈ R (B.3)

can be rewritten as (Mihalas 1970)

H (a, x) =
1
π

∫ +∞

−∞

e−y2 a
(x − y)2 + a2 d y

=
1
π

∫ +∞

−∞

e−y2
∫ ∞

0
e−av cos((x − y)v) d v d y

=
1
π

∫ +∞

−∞

e−y2
∫ ∞

0
e−av cos(xv) cos(yv) d v d y

=
1
π

∫ ∞

0
e−av cos(xv)

∫ +∞

−∞

e−y2
cos(yv) d y d v . (B.4)

Furthermore, it is true that ∫ +∞

−∞

e−y2
cos(yv) d y =

√
πe−(v/2)2

. (B.5)
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From equations (B.4) and (B.5) we get

H (a, x) =
1
√
π

∫ ∞

0
e−av cos(xv)e−(v/2)2

d v . (B.6)

If a < 1, then the term e−av in equation (B.6) may be written in terms of the power series (Mihalas 1970)

e−av =

∞∑
n=0

(−1)n

n!
(av)n (B.7)

It follows then

H (a, x) =
1
√
π

∞∑
n=0

(−1)n

n!
an

∫ ∞

0
vne−(v/2)2

cos(xv) d v , (B.8)

and hence

H (a, x) =

∞∑
n=0

Hn(x) an , (B.9)

where the functions Hn(x) are given by

Hn(x) ≡
(−1)n

√
π n!

∫ ∞

0
vne−(v/2)2

cos(xv) d v . (B.10)

We now want to analyse the behaviour of the functions Hn(x) for all n and v. In particular, we want to know if
this functions are bounded. To this end, we take a look at their absolute value |Hn(x)|. First note that∣∣∣∣∣∣

∫
I

f (x) d x

∣∣∣∣∣∣ ≤
∫

I
| f (x)| d x (B.11)

for any function f (x) and arbitrary integration interval I. It follows from this that

|Hn(x)| =

∣∣∣∣∣∣ (−1)n

√
π n!

∫ ∞

0
vne−(v/2)2

cos(xv) d v

∣∣∣∣∣∣
≤

1
√
π n!

∣∣∣∣∣∣
∫ ∞

0
vne−(v/2)2

cos(xv) d v

∣∣∣∣∣∣
≤

1
√
π n!

∫ ∞

0

∣∣∣vne−(v/2)2
cos(xv)

∣∣∣ d v . (B.12)

Since e−(v/2)2
> 0 ∀ v ∈ R and the integral is computed over (0,∞), it follows that |vne−(v/2)2

cos(xv)| =

vne−(v/2)2
| cos(xv)|, ∀ n ∈ N0, and x, v ∈ R. Furthermore, | cos(xv)| ≤ 1 ∀ x, v ∈ R, and thus

|Hn(x)| ≤
1
√
π n!

∫ ∞

0
vne−(v/2)2

d v

=
2n+1

√
π n!

∫ ∞

0
vne−v2

d v , (B.13)

where v was replaced by v/2 in the last step. Bearing in mind that

∫ ∞

0
vne−v2

d v =


√
π

2
1·3· ··· ·(2k−1)

2k n = 2k
1
2 k! n = 2k + 1

,
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it follows, using equation (B.13) that

|Hn(x)| ≤
1
√
π n!

∫ ∞

0
vne−(v/2)2

d v

=
2n+1

√
π n!
·


√
π

2
1·3· ··· ·(2k−1)

2k n = 2k
1
2 k! n = 2k + 1

,

and hence

|Hn(x)| ≤


1
k! n = 2k

1
√
π

22k+1

(2k+1)(2k)···(k+1) n = 2k + 1
(B.14)

Since k ∈ {0, 1, 2, . . .}, it follows immediately that

|Hn(x)| ≤
2
√
π
≈ 1.123 ∀ n ∈ N0, x ∈ R . (B.15)

The functions Hn(x) are thus bounded to values of the order of untiy. It follows then that for values of a small
compared to unity, ie a � 1, the VHf in the form of equation (B.9 can be approximated to zeroth order in a by
the first term of the series, i.e.

H (a, x) ≈ H0(x), a � 1, x ∈ R , (B.16)

Note that this result is exact in the limit a→ 0. Using equation (B.5) it is straightforward that

H0(x) =
1
√
π

∫ ∞

0
e−(v/2)2

cos(xv) d v = e−x2
, (B.17)

and from this, we get that
H (a, x) ≈ e−x2

, a � 1, x ∈ R. (B.18)



APPENDIX C

Dependence of the density on the scale factor

The Friedmann equations (4.5) and (4.6), now with a generalised density, can be rewritten as

ȧ 2 =
1
3

(8 πG ρ + Λ) a 2 − k c 2 (C.1)

3 ä = Λ a − 4 πG
(
ρ + 3

p
c2

)
a (C.2)

Differentiating equation (C.1) with respect to t gives

2 ȧ ä =
2
3

(8 πG ρ + Λ) a ȧ +
1
3

8 πG ρ̇ a 2 (C.3)

Multiplying equation (C.2) by −2/3ȧ gives

− 2 ȧ ä = −
2
3

Λ a ȧ +
8
3
πG

(
ρ + 3

p
c2

)
a ȧ (C.4)

Adding up these equations leads to

0 =
2
3

8 πG ρ a ȧ +
1
3

8 πG ρ̇ a 2 +
8
3
πG

(
ρ + 3

p
c2

)
a ȧ (C.5)

Solving for ρ̇ leads finally to

ρ̇ = −3
ȧ
a

(
ρ +

1
c 2 p

)
(C.6)

Assuming that the evolution of the density ρ i for each component obeys an equation of the form of equation
(C.6), and that the equation of state for each species can be expressed as p i = w i c 2ρ i (cf. equation 4.9), it follows
that

ρ̇ i

ρ i
= −3(1 + w i)

ȧ i

a i

⇐⇒
d ρ i

ρ i
= −3(1 + w i)

d a i

a i

⇐⇒ ln ρ i = −3(1 + w i) ln a i + C
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and from this it is straightforward to see that

ρ i ∝ a−3(1+w i) (C.7)

For ordinary matter, p = 0 implying w m = 0, and hence, the matter density evolves proportional to a−3, as
expected. Relativistic matter, in particular radiation, obeys an equation of state with w r = 1/3, and thus the
radiation density evolves as a−4. This is usually interpreted as being the result, first, of the density dilution
due to expansion, which is proportional to a−3, and of an additional decrease in the radiation energy, due to the
cosmological redshift which is proportional to a−1. These factors explain the a−4 dependence of the radiation–
density evolution. Furthermore, the fact that the Λ–term in the Friedmann equation (4.5) is independent of a
implies that wΛ = −1, and that the ”curvature” density, which evolves as a−2, obeys an equation of state with
w k = −1/3.



APPENDIX D

The proper path length

To derive equation (4.22), first consider that the deceleration parameter (eq. 4.7) can be rewritten as

q = −H2
(
Ḣ + H 2

)
= −

ä a
ȧ2 = −

ä
a H 2 . (D.1)

On the other hand, the second Friedmann equation (4.6) including all forms of density reads

ä
a

= −
4
3
πG

∑
i

(1 + 3w i) ρ i , (D.2)

where
∑

i ρ i ≡ ρ, and p has been replaced using equation (4.9). Inserting the above equation into equation
(D.1), and using equation (4.11) yields

q =
∑

i

1 + 3w i

2
Ω i . (D.3)

Now, inserting this last expression in equation (4.21), and assuming ΩΛ ≡ 0 it is straightforward that∣∣∣∣∣ d l
d z

∣∣∣∣∣ =
c

H0
(1 + z)−2 (1 + 2 q0 z)−

1
2 . (D.4)

where the value at present time for all cosmological parameters has been assumed.
An alternative derivation of this last equation for k = +1 is the following: The first ingredient is the Friedmann
equation for vanishing pressure and cosmological constant( ȧ

a

)2
+ 2

ä
a2 = −

k c2

a2 , (D.5)

where a(t) is the scaling factor of the Universe and k/a2 is the Riemannian curvature. This equation can be solved
in parametric form for a space with positive curvature (k = +1) by the functions (Sandage 1961)

a(θ; r) = r (1 − cos θ) , (D.6)
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t(θ; r) =
r
c

(θ − sin θ) . (D.7)

These are the parametric equations of a cycloid, where r is the radius of the generating circle, and θ is the angle
through which the circle has rolled. A more physical interpretation of this quantity can be obtained by computing
the radial path length of a photon, emitted at time t and observed at time t0:

u =

∫ t0

t

c d t
a(t)

. (D.8)

Plugging equations (D.6) and (D.7) into the above equation and integrating gives u = θ(t0) − θ(t), which means
that the quantity the angle θ is actually the comoving proper path length, i.e. d θ ≡ d u.
Now, from the definition of the cosmological redshift, 1 + z(t) ≡ a(t0)/a(t) and the above equations it is straight-
forward to show that (Sandage 1961)

cos θ =
z + cos θ0

1 + z
, (D.9)

where θ0 ≡ θ(t0).
For the Hubble parameter (eq. 4.5) and the deceleration parameter (eq. 4.7) follows quite analogously that

H =
c
r

sin θ
(1 − cos θ)2 , (D.10)

and
q =

1 − cos θ
sin2 θ

. (D.11)

The rate of change of the physical distance l as a function of redshift is given by

d l
d z
≡ a(t)

d u
d z

= a(t)
d θ
d z

. (D.12)

Solving equation (D.9) for θ and taking the derivative with respect to z gives

d θ
d z

= −
1 − cos θ0

(1 + z)
[
2z (1 − cos θ0) + sin2 θ0

]1/2 . (D.13)

Now, using equations (D.6), (D.10), and (D.11) the last equation can be brought in the form∣∣∣∣∣ d θ
d z

∣∣∣∣∣ =
c

H0 a0
(1 + z)−1 (1 + 2 q0 z)−

1
2 , (D.14)

where q0 ≡ q(θ0), and we have taken the absolute value to get rid of the minus sign. Finally, using equation (D.12)∣∣∣∣∣ d l
d z

∣∣∣∣∣ =
c

H0
(1 + z)−2 (1 + 2 q0 z)−

1
2 . (D.15)

Recall that this expression is valid only for the special case of a vanishing Λ and zero pressure, and hence, is
very unlikely to be valid for our Universe, as the most recent measurements of the fundamental cosmological
parameters point to the fact that Λ , 0.



APPENDIX E

Evolutionary parameters of the Lyα absorbers
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Table E.1: Compilation of the evolutionary parameters of the Lyα absorbers found in the literature. For the meaning of the
different parameters see Chapter 4.

z log N HI [ cm2] N0 γ B β LOS/lines Reference

1.5 − 3.78 W > 0.32 − 2.17 ± 36 − − 11/277 Murdoch et al. (1986)

0.2 − 3.5 13.0 − 22.0 − − 1.45 · 108 1.51 ± 0.02 34/83 Tytler (1987)

0.67 − 3.58 > 17.2 0.76 0.68 ± 0.54 108.45±0.30 1.51 ± 0.02 90/54(LLS ) Sargent et al. (1989)

0.67 − 3.58 > 21 0.09 ± 0.04 0.68 ± 0.54 108.45±0.30 1.51 ± 0.02 90/6(DLA) Sargent et al. (1989)

0.36 − 2.5 17.2 − 21.8 1.2+1.2
−0.6 0.3 ± 0.9 103.52±0.05 1.25 ± 0.03 52/35(LLS ) Lanzetta (1991)

2.5 − 3.7 17.2 − 21.8 (8.1 ± 0.5) · 10−4 5.7 ± 1.9 103.52±0.05 1.25 ± 0.03 52/35(LLS ) Lanzetta (1991)

2.7 − 3.4 > 13.75 − 2.1 ± 0.5 − 1.74 ± 0.06 1/301 Rauch et al. (1992)

2.5 − 4.3 13 − 22 − 2.46 ± 0.37 − 1.43 ± 0.04 − Press et al. (1993)

0 − 5 12.3 − 17.20 34.56a 2.46 7.1 · 105 1.5 − Madau (1995)

0 − 5 17.20 − 20 0.94a 0.68 2.08 · 108 1.5 − Madau (1995)

2.53 − 3.19 12.3 − 22 − − 4.9 · 107 −1.46+0.09
−0.05 4/1056 Hu et al. (1995)

2.95 − 3.6 > 13.3 − 2.2/2.5 − 1.8/1.4 1/178 Cristiani et al. (1995)

0 − 5 > 14.0 16.8(+)0.687b 0.8(+)2.5b − − − Muecket et al. (1996)

2.43 − 3.04 > 12.21 − − 6.2 · 108 1.5 1/ Kirkman & Tytler (1997)

2.0 − 3.5 12.8 − 16.0 3.12 2.78 ± 0.71 − − 5/536 Kim et al. (1997)

0 − 3.6 12.8 − 16.0 6.89 2.15 ± 0.21 − − 5/536 Kim et al. (1997)

0 − 4 12.8 − 16.0 − 2.41 ± 0.18 − − 5/536 Kim et al. (1997)

2.1 − 3.5 13.1 − 14.0 39.44 1.29 ± 0.45 4.9 · 107 1.46 5/536 Kim et al. (1997)

0 − 1.5 > 14.0b − 0.6b − − − Riediger et al. (1998)

1.5 − 5.0 > 14.0 − 2.9b − − − Riediger et al. (1998)

0 − 1.5 13.6 − 17.8 − 0.16 − 1.3 63/987 Weymann et al. (1998)

1.75 − 5.5 12.0 − 14.0 181.5a 1.29 1.73 · 105 1.46 − Bershady et al. (1999)

1.75 − 5.5 14.0 − 17.20 1.29a 3.1 1.31 · 106 1.46 − Bershady et al. (1999)

1.75 − 5.5 17.20 − 20.0 0.92a 0.68 2.08 · 108 1.5 − Bershady et al. (1999)

1.5 − 4.0 12.5 − 14.0 − − − 1.4 − 1.5 6/ Kim et al. (2001)

1.5 − 4.0 12.5 − 14.0 − − − 1.4 − 1.5 6/ Kim et al. (2001)

1.5 − 4.0 13.64 − 16.0 − 2.19 ± 0.27 − − 6/ Kim et al. (2001)

1.5 − 4.0 13.1 − 14.0 − 1.10 ± 0.21 − − 6/ Kim et al. (2001)

1.5 − 4.0 13.64 − 17.0 6.1 2.47 ± 0.18 4.9 · 107 1.46 8/1166 Kim et al. (2002a)

0.9 − 1.7 13.0 − 16 10.87 ± 11.44 2.23 ± 1.21 109.62±0.58 1.61 ± 0.04 1/235 Janknecht et al. (2002)

0.002 − 0.069 12.3 − 14.5 − − 1010.3±1.0 1.65 ± 0.07 30/187 Penton et al. (2004)

0.002 − 0.069 14.5 − 17.5 − − 105.2±4.9 1.33 ± 0.30 30/187 Penton et al. (2004)

0.002 − 0.069 13.1 − 14.0 70.79+10.49
−7.69 0.76 ± 0.12 − − 30/187 Penton et al. (2004)

0.002 − 0.069 > 14.0 25.11+5.08
−3.73 − − − 30/187 Penton et al. (2004)

0.020 − 0.234 13.1 − 14.0 179.24 ± 13.38 − − 1.96 ± 0.15 1/104 Williger et al. (2006)

0.002 − 0.423 > 14.0 29.05 ± 5.39 − − 1.96 ± 0.15 1/104 Williger et al. (2006)

< 0.4 13.2 − 16.5 96 ± 7 − 1.99 · 1013 1.84 ± 0.06 7/341 Lehner et al. (2006)

a This number was computed by the authors from the normalisation constant A in the expression n(z) = A N−β (1+z)γ given
in the reference by requering that the column density distribution be normalised in the proper column density interval.

b This parameters were derived from simulations rather than from observations (see corresponding reference for details).
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